Verwandte Artikel zu Adaptive Regression for Modeling Nonlinear Relationships...

Adaptive Regression for Modeling Nonlinear Relationships (Statistics for Biology and Health) - Hardcover

 
9783319339443: Adaptive Regression for Modeling Nonlinear Relationships (Statistics for Biology and Health)

Inhaltsangabe

This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. 

A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes.  

The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book's Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs. 


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

George Knafl is Professor and Biostatistician in the School of Nursing of the University of North Carolina at Chapel Hill where he teaches statistics courses to doctoral nursing students, consults with graduate students and faculty on their research, and conducts his own research. He has over 35 years of experience in teaching, consulting, and research in statistics. His research involves development of methods for searching through alternative models for data to identify an effective choice for modeling those data and the application of those methods to the analysis of health science data sets. He is also Professor Emeritus in the College of Computing and Digital Media at DePaul University and has also taught in Schools of Nursing at Yale University and the Oregon Health and Sciences University.

Kai Ding is Assistant Professor, Department of Biostatistics and Epidemiology at the University of Oklahoma (OU) Health Sciences Center. He is also Associated Member ofthe Peggy and Charles Stephenson Cancer Center (SCC) of OU Medicine. Dr. Ding received his Ph.D. in Biostatistics from the University of North Carolina at Chapel Hill in 2010. His research has focuses on survival analysis and semiparametric inference. He has been involved in the design and analysis of numerous research studies in cancer and ophthalmology and currently serves on the Scientific Review Committee and the Protocol Monitoring Committee of the SCC.                                                                                                                                                                                                                                                                          

Von der hinteren Coverseite

This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.

A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes.

The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book’s Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs.

  • Provides insight into modeling of nonlinear relationships and also justifications for when to use them, thereby providing novel insights about relationships
  • Addresses not only adaptive generation of additive models but also of models based on nonlinear interactions
  • Discusses adaptive modeling of variances/dispersions as well as of means
  • Highlights both univariate and multivariate outcomes, rather than solely univariate outcomes



„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

unread, with a mimimum of shelfwear
Diesen Artikel anzeigen

EUR 3,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

EUR 19,75 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319816388: Adaptive Regression for Modeling Nonlinear Relationships (Statistics for Biology and Health)

Vorgestellte Ausgabe

ISBN 10:  3319816381 ISBN 13:  9783319816388
Verlag: Springer, 2018
Softcover

Suchergebnisse für Adaptive Regression for Modeling Nonlinear Relationships...

Beispielbild für diese ISBN

Knafl, George J.; Ding, Kai
Verlag: Springer, 2016
ISBN 10: 3319339443 ISBN 13: 9783319339443
Gebraucht Hardcover Erstausgabe

Anbieter: SpringBooks, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. 1. Auflage. unread, with a mimimum of shelfwear. Bestandsnummer des Verkäufers CEA-2303C-KRANICH-19-1000

Verkäufer kontaktieren

Gebraucht kaufen

EUR 29,77
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J., Ding, Kai
Verlag: Springer, 2016
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 372 pp., hardcover, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1315368

Verkäufer kontaktieren

Neu kaufen

EUR 39,88
Währung umrechnen
Versand: EUR 19,75
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

George J. Knafl|Kai Ding
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides insight into modeling of nonlinear relationships and also justifications for when to use them, thereby providing novel insights about relationshipsAddresses not only adaptive generation of additive models but also of . Bestandsnummer des Verkäufers 119371154

Verkäufer kontaktieren

Neu kaufen

EUR 64,33
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.; Ding, Kai
Verlag: Springer, 2016
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 280. Bestandsnummer des Verkäufers 18374710128

Verkäufer kontaktieren

Neu kaufen

EUR 69,27
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.; Ding, Kai
Verlag: Springer, 2016
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 280. Bestandsnummer des Verkäufers 26374710138

Verkäufer kontaktieren

Neu kaufen

EUR 66,01
Währung umrechnen
Versand: EUR 7,73
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Kai Ding
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes.The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book¿s Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 400 pp. Englisch. Bestandsnummer des Verkäufers 9783319339443

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Kai Ding
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes. The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book's Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs. Bestandsnummer des Verkäufers 9783319339443

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Kai Ding
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes. The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book's Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs. 400 pp. Englisch. Bestandsnummer des Verkäufers 9783319339443

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.; Ding, Kai
Verlag: Springer, 2016
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 280. Bestandsnummer des Verkäufers 371335333

Verkäufer kontaktieren

Neu kaufen

EUR 67,09
Währung umrechnen
Versand: EUR 10,21
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Knafl, George J.; Ding, Kai
Verlag: Springer, 2016
ISBN 10: 3319339443 ISBN 13: 9783319339443
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783319339443_new

Verkäufer kontaktieren

Neu kaufen

EUR 76,23
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 8 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen