Verwandte Artikel zu Form Versus Function: Theory and Models for Neuronal...

Form Versus Function: Theory and Models for Neuronal Substrates (Springer Theses) - Hardcover

 
9783319395517: Form Versus Function: Theory and Models for Neuronal Substrates (Springer Theses)

Inhaltsangabe

<DIV>THIS THESIS ADDRESSES ONE OF THE MOST FUNDAMENTAL CHALLENGES FOR MODERN SCIENCE: HOW CAN THE BRAIN AS A NETWORK OF NEURONS PROCESS INFORMATION, HOW CAN IT CREATE AND STORE INTERNAL MODELS OF OUR WORLD, AND HOW CAN IT INFER CONCLUSIONS FROM AMBIGUOUS DATA? THE AUTHOR ADDRESSES THESE QUESTIONS WITH THE RIGOROUS LANGUAGE OF MATHEMATICS AND THEORETICAL PHYSICS, AN APPROACH THAT REQUIRES A HIGH DEGREE OF ABSTRACTION TO TRANSFER RESULTS OF WET LAB BIOLOGY TO FORMAL MODELS.</DIV><DIV>&NBSP;</DIV><DIV>THE THESIS STARTS WITH AN IN-DEPTH DESCRIPTION OF THE STATE-OF-THE-ART IN THEORETICAL NEUROSCIENCE, WHICH IT SUBSEQUENTLY USES AS A BASIS TO DEVELOP SEVERAL NEW AND ORIGINAL IDEAS. THROUGHOUT THE TEXT, THE AUTHOR CONNECTS THE FORM AND FUNCTION OF NEURONAL NETWORKS. THIS IS DONE IN ORDER TO ACHIEVE FUNCTIONAL PERFORMANCE OF BIOLOGICAL BRAINS BY TRANSFERRING THEIR FORM TO SYNTHETIC ELECTRONICS SUBSTRATES, AN APPROACH REFERRED TO AS NEUROMORPHIC COMPUTING. THE OBVIOUS ASPECT THAT THIS TRANSFER CAN NEVER BE PERFECT BUT NECESSARILY LEADS TO PERFORMANCE DIFFERENCES IS SUBSTANTIATED AND EXPLORED IN DETAIL.</DIV><DIV>&NBSP;</DIV><DIV>THE AUTHOR ALSO INTRODUCES A NOVEL INTERPRETATION OF THE FIRING ACTIVITY OF NEURONS. HE PROPOSES A PROBABILISTIC INTERPRETATION OF THIS ACTIVITY AND SHOWS BY MEANS OF FORMAL DERIVATIONS THAT STOCHASTIC NEURONS CAN SAMPLE FROM INTERNALLY STORED PROBABILITY DISTRIBUTIONS. THIS IS CORROBORATED BY THE AUTHOR’S RECENT FINDINGS, WHICH CONFIRM THAT BIOLOGICAL FEATURES LIKE THE HIGH CONDUCTANCE STATE OF NETWORKS ENABLE THIS MECHANISM. THE AUTHOR GOES ON TO SHOW THAT NEURAL SAMPLING CAN BE IMPLEMENTED ON SYNTHETIC NEUROMORPHIC CIRCUITS, PAVING THE WAY FOR FUTURE APPLICATIONS IN MACHINE LEARNING AND COGNITIVE COMPUTING, FOR EXAMPLE AS ENERGY-EFFICIENT IMPLEMENTATIONS OF DEEP LEARNING NETWORKS.</DIV><DIV>&NBSP;</DIV><DIV>THE THESIS OFFERS AN ESSENTIAL RESOURCE FO

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models. The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail. The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author’s recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks. The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. 

Biografía del autor

Mihai Petrovici started studying Physics at the University of Heidelberg in 2001. During his early undergraduate days, he worked on particle tracking for the ALICE experiment at CERN. For his diploma thesis, he moved to solid state physics, where he studied glasses at low temperatures. He began his PhD in 2008 in the Electronic Vision(s) group of Karlheinz Meier and Johannes Schemmel, where he worked at the interface of theoretical neuroscience and neuromorphic computing, earning his doctorate with summa cum laude in 2015. During this time, he established a theoretical department within the Vision(s) group, which he is currently leading.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2016
  • ISBN 10 3319395513
  • ISBN 13 9783319395517
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten402

Gebraucht kaufen

Zustand: Wie neu
Like New
Diesen Artikel anzeigen

EUR 29,58 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

EUR 3,55 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319819136: Form Versus Function: Theory and Models for Neuronal Substrates (Springer Theses)

Vorgestellte Ausgabe

ISBN 10:  3319819135 ISBN 13:  9783319819136
Verlag: Springer, 2018
Softcover

Suchergebnisse für Form Versus Function: Theory and Models for Neuronal...

Beispielbild für diese ISBN

Petrovici, Mihai Alexandru
Verlag: Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020096942

Verkäufer kontaktieren

Neu kaufen

EUR 107,50
Währung umrechnen
Versand: EUR 3,55
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mihai Alexandru Petrovici
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models.The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail.The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author's recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks.The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. 400 pp. Englisch. Bestandsnummer des Verkäufers 9783319395517

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Petrovici, Mihai Alexandru
Verlag: Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783319395517

Verkäufer kontaktieren

Neu kaufen

EUR 132,10
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Petrovici, Mihai Alexandru
Verlag: Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Bestandsnummer des Verkäufers ria9783319395517_new

Verkäufer kontaktieren

Neu kaufen

EUR 118,98
Währung umrechnen
Versand: EUR 14,18
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mihai Alexandru Petrovici
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models.The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfercan never be perfect but necessarily leads to performance differences is substantiated and explored in detail.The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author's recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks.The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. Bestandsnummer des Verkäufers 9783319395517

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 31,81
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Mihai Alexandru Petrovici
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nominated as an outstanding PhD thesis by Heidelberg University, GermanyProvides an excellent state-of-the-art overview of theoretical neuroscienceAn inspiration for newcomers to engage in this fascinating and f. Bestandsnummer des Verkäufers 120395793

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Petrovici, Mihai Alexandru (Author)
Verlag: Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 374 pages. 9.25x6.10x1.18 inches. In Stock. Bestandsnummer des Verkäufers x-3319395513

Verkäufer kontaktieren

Neu kaufen

EUR 163,18
Währung umrechnen
Versand: EUR 11,83
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Petrovici, Mihai Alexandru
Verlag: Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Gebraucht Hardcover

Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA77333193955136

Verkäufer kontaktieren

Gebraucht kaufen

EUR 166,98
Währung umrechnen
Versand: EUR 29,58
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb