Finitely Supported Mathematics: An Introduction

0 durchschnittliche Bewertung
( 0 Bewertungen bei Goodreads )
 
9783319422817: Finitely Supported Mathematics: An Introduction
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:
 
 

<P>IN THIS BOOK THE AUTHORS PRESENT AN ALTERNATIVE SET THEORY DEALING WITH A MORE RELAXED NOTION OF INFINITENESS, CALLED FINITELY SUPPORTED MATHEMATICS (FSM). IT HAS STRONG CONNECTIONS TO THE FRAENKEL-MOSTOWSKI (FM) PERMUTATIVE MODEL OF ZERMELO-FRAENKEL (ZF) SET THEORY WITH ATOMS AND TO THE THEORY OF (GENERALIZED) NOMINAL SETS. MORE EXACTLY, FSM IS ZF MATHEMATICS REPHRASED IN TERMS OF FINITELY SUPPORTED STRUCTURES, WHERE THE SET OF ATOMS IS INFINITE (NOT NECESSARILY COUNTABLE AS FOR NOMINAL SETS). IN FSM, 'SETS' ARE REPLACED EITHER BY `INVARIANT SETS' (SETS ENDOWED WITH SOME GROUP ACTIONS SATISFYING A FINITE SUPPORT REQUIREMENT) OR BY `FINITELY SUPPORTED SETS' (FINITELY SUPPORTED ELEMENTS IN THE POWERSET OF AN INVARIANT SET). IT IS A THEORY OF `INVARIANT ALGEBRAIC STRUCTURES' IN WHICH INFINITE ALGEBRAIC STRUCTURES ARE CHARACTERIZED BY USING THEIR FINITE SUPPORTS. </P> <P>AFTER EXPLAINING THE MOTIVATION FOR USING INVARIANT SETS IN THE EXPERIMENTAL SCIENCES AS WELL AS THE CONNECTIONS WITH THE NOMINAL APPROACH, ADMISSIBLE SETS AND GANDY MACHINES (CHAPTER 1), THE AUTHORS PRESENT IN CHAPTER 2 THE BASICS OF INVARIANT SETS AND SHOW THAT THE PRINCIPLES OF CONSTRUCTING FSM HAVE HISTORICAL ROOTS BOTH IN THE DEFINITION OF TARSKI `LOGICAL NOTIONS' AND IN THE ERLANGEN PROGRAM OF KLEIN FOR THE CLASSIFICATION OF VARIOUS GEOMETRIES ACCORDING TO INVARIANTS UNDER SUITABLE GROUPS OF TRANSFORMATIONS. FURTHERMORE, THE CONSISTENCY OF VARIOUS CHOICE PRINCIPLES IS ANALYZED IN FSM. CHAPTER 3 EXAMINES WHETHER IT IS POSSIBLE TO OBTAIN VALID RESULTS BY REPLACING THE NOTION OF INFINITE SETS WITH THE NOTION OF INVARIANT SETS IN THE CLASSICAL ZF RESULTS. THE AUTHORS PRESENT TECHNIQUES FOR REFORMULATING ZF PROPERTIES OF ALGEBRAIC STRUCTURES IN FSM. IN CHAPTER 4 THEY GENERALIZE FM SET THEORY BY PROVIDING A NEW SET OF AXIOMS INSPIRED BY THE THEORY OF AMORPHOUS SETS, AND SO DEFINING THE EXTENDED FRAENKEL-MOSTOWSKI (EFM) SET THEORY. IN CHAPTER 5 THEY DEFINE FSM SEMANTICS F

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor:

In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports.

After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi.

The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Versand: EUR 11,19
Von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Weitere beliebte Ausgaben desselben Titels

9783319825458: Finitely Supported Mathematics: An Introduction

Vorgestellte Ausgabe

ISBN 10: 3319825453 ISBN 13: 9783319825458
Verlag: Springer, 2018
Softcover

Beste Suchergebnisse bei AbeBooks

Beispielbild für diese ISBN

1.

Andrei Alexandru, Gabriel Ciobanu
Verlag: Springer 2016-08-19 (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: 3
Anbieter
Chiron Media
(Wallingford, Vereinigtes Königreich)
Bewertung

Buchbeschreibung Springer 2016-08-19, 2016. Hardcover. Zustand: New. Bestandsnummer des Verkäufers 6666-LBR-9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 105,90
Währung umrechnen

In den Warenkorb

Versand: EUR 11,19
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

2.

Alexandru, Andrei;ciobanu, Gabriel
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 3
Anbieter
GreatBookPrices
(Columbia, MD, USA)
Bewertung

Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers 26593106-n

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 120,81
Währung umrechnen

In den Warenkorb

Versand: EUR 2,44
Innerhalb USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

3.

Alexandru, Andrei;ciobanu, Gabriel
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 3
Anbieter
GreatBookPricesUK
(Castle Donington, DERBY, Vereinigtes Königreich)
Bewertung

Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers 26593106-n

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 105,50
Währung umrechnen

In den Warenkorb

Versand: EUR 18,00
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

4.

Andrei Alexandru
Verlag: Springer-Verlag Gmbh Aug 2016 (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 1
Anbieter
Rheinberg-Buch
(Bergisch Gladbach, Deutschland)
Bewertung

Buchbeschreibung Springer-Verlag Gmbh Aug 2016, 2016. Buch. Zustand: Neu. Neuware - In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. 185 pp. Englisch. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 106,99
Währung umrechnen

In den Warenkorb

Versand: EUR 17,13
Von Deutschland nach USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

5.

Andrei Alexandru
Verlag: Springer-Verlag Gmbh Aug 2016 (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 1
Anbieter
BuchWeltWeit Inh. Ludwig Meier e.K.
(Bergisch Gladbach, Deutschland)
Bewertung

Buchbeschreibung Springer-Verlag Gmbh Aug 2016, 2016. Buch. Zustand: Neu. Neuware - In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. 185 pp. Englisch. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 106,99
Währung umrechnen

In den Warenkorb

Versand: EUR 17,13
Von Deutschland nach USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

6.

Alexandru, Andrei
Verlag: Springer (2017)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Paperback Anzahl: 10
Print-on-Demand
Anbieter
Ria Christie Collections
(Uxbridge, Vereinigtes Königreich)
Bewertung

Buchbeschreibung Springer, 2017. Paperback. Zustand: New. PRINT ON DEMAND Book; New; Publication Year 2017; Not Signed; Fast Shipping from the UK. No. book. Bestandsnummer des Verkäufers ria9783319422817_lsuk

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 122,69
Währung umrechnen

In den Warenkorb

Versand: EUR 4,64
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer
Foto des Verkäufers

7.

Andrei Alexandru
Verlag: Springer-Verlag Gmbh Aug 2016 (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 1
Anbieter
AHA-BUCH GmbH
(Einbeck, Deutschland)
Bewertung

Buchbeschreibung Springer-Verlag Gmbh Aug 2016, 2016. Buch. Zustand: Neu. Neuware - In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. 185 pp. Englisch. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 106,99
Währung umrechnen

In den Warenkorb

Versand: EUR 34,50
Von Deutschland nach USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

8.

Alexandru, Andrei; Ciobanu, Gabriel
Verlag: Springer (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: > 20
Print-on-Demand
Anbieter
California Books
(MIAMI, FL, USA)
Bewertung

Buchbeschreibung Springer, 2016. Zustand: New. This book is printed on demand. Bestandsnummer des Verkäufers I-9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 141,62
Währung umrechnen

In den Warenkorb

Versand: Gratis
Innerhalb USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

9.

Alexandru, Andrei; Ciobanu, Gabriel
Verlag: Springer
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: > 20
Anbieter
Russell Books
(Victoria, BC, Kanada)
Bewertung

Buchbeschreibung Springer. Hardcover. Zustand: New. 3319422812 Special order direct from the distributor. Bestandsnummer des Verkäufers ING9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 153,96
Währung umrechnen

In den Warenkorb

Versand: EUR 6,45
Von Kanada nach USA
Versandziele, Kosten & Dauer
Beispielbild für diese ISBN

10.

Andrei Alexandru, Gabriel Ciobanu
Verlag: Springer International Publishing AG, Switzerland (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: 1
Anbieter
The Book Depository EURO
(London, Vereinigtes Königreich)
Bewertung

Buchbeschreibung Springer International Publishing AG, Switzerland, 2016. Hardback. Zustand: New. 1st ed. 2016. Language: English. Brand new Book. In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi.The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. Bestandsnummer des Verkäufers LIB9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 160,48
Währung umrechnen

In den Warenkorb

Versand: EUR 3,60
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer