Finitely Supported Mathematics: An Introduction

0 durchschnittliche Bewertung
( 0 Bewertungen bei Goodreads )
 
9783319422817: Finitely Supported Mathematics: An Introduction
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:
 
 

<P>IN THIS BOOK THE AUTHORS PRESENT AN ALTERNATIVE SET THEORY DEALING WITH A MORE RELAXED NOTION OF INFINITENESS, CALLED FINITELY SUPPORTED MATHEMATICS (FSM). IT HAS STRONG CONNECTIONS TO THE FRAENKEL-MOSTOWSKI (FM) PERMUTATIVE MODEL OF ZERMELO-FRAENKEL (ZF) SET THEORY WITH ATOMS AND TO THE THEORY OF (GENERALIZED) NOMINAL SETS. MORE EXACTLY, FSM IS ZF MATHEMATICS REPHRASED IN TERMS OF FINITELY SUPPORTED STRUCTURES, WHERE THE SET OF ATOMS IS INFINITE (NOT NECESSARILY COUNTABLE AS FOR NOMINAL SETS). IN FSM, 'SETS' ARE REPLACED EITHER BY `INVARIANT SETS' (SETS ENDOWED WITH SOME GROUP ACTIONS SATISFYING A FINITE SUPPORT REQUIREMENT) OR BY `FINITELY SUPPORTED SETS' (FINITELY SUPPORTED ELEMENTS IN THE POWERSET OF AN INVARIANT SET). IT IS A THEORY OF `INVARIANT ALGEBRAIC STRUCTURES' IN WHICH INFINITE ALGEBRAIC STRUCTURES ARE CHARACTERIZED BY USING THEIR FINITE SUPPORTS. </P> <P>AFTER EXPLAINING THE MOTIVATION FOR USING INVARIANT SETS IN THE EXPERIMENTAL SCIENCES AS WELL AS THE CONNECTIONS WITH THE NOMINAL APPROACH, ADMISSIBLE SETS AND GANDY MACHINES (CHAPTER 1), THE AUTHORS PRESENT IN CHAPTER 2 THE BASICS OF INVARIANT SETS AND SHOW THAT THE PRINCIPLES OF CONSTRUCTING FSM HAVE HISTORICAL ROOTS BOTH IN THE DEFINITION OF TARSKI `LOGICAL NOTIONS' AND IN THE ERLANGEN PROGRAM OF KLEIN FOR THE CLASSIFICATION OF VARIOUS GEOMETRIES ACCORDING TO INVARIANTS UNDER SUITABLE GROUPS OF TRANSFORMATIONS. FURTHERMORE, THE CONSISTENCY OF VARIOUS CHOICE PRINCIPLES IS ANALYZED IN FSM. CHAPTER 3 EXAMINES WHETHER IT IS POSSIBLE TO OBTAIN VALID RESULTS BY REPLACING THE NOTION OF INFINITE SETS WITH THE NOTION OF INVARIANT SETS IN THE CLASSICAL ZF RESULTS. THE AUTHORS PRESENT TECHNIQUES FOR REFORMULATING ZF PROPERTIES OF ALGEBRAIC STRUCTURES IN FSM. IN CHAPTER 4 THEY GENERALIZE FM SET THEORY BY PROVIDING A NEW SET OF AXIOMS INSPIRED BY THE THEORY OF AMORPHOUS SETS, AND SO DEFINING THE EXTENDED FRAENKEL-MOSTOWSKI (EFM) SET THEORY. IN CHAPTER 5 THEY DEFINE FSM SEMANTICS F

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor:

In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Neu kaufen Angebot ansehen

Versand: EUR 4,41
Von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Weitere beliebte Ausgaben desselben Titels

9783319825458: Finitely Supported Mathematics: An Introduction

Vorgestellte Ausgabe

ISBN 10:  3319825453 ISBN 13:  9783319825458
Verlag: Springer, 2018
Softcover

Beste Suchergebnisse bei AbeBooks

1.

Alexandru, Andrei
Verlag: Springer (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Paperback Anzahl: 1
Print-on-Demand
Anbieter
Ria Christie Collections
(Uxbridge, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Springer, 2016. Paperback. Zustand: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Bestandsnummer des Verkäufers ria9783319422817_lsuk

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 71,41
Währung umrechnen

In den Warenkorb

Versand: EUR 4,41
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

2.

Andrei Alexandru; Gabriel Ciobanu
Verlag: Springer (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: 1
Anbieter
European-Media-Service Mannheim
(Mannheim, Deutschland)
Bewertung
[?]

Buchbeschreibung Springer, 2016. Zustand: New. Bestandsnummer des Verkäufers L9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 106,99
Währung umrechnen

In den Warenkorb

Versand: EUR 2,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

3.

Andrei Alexandru (author), Gabriel Ciobanu (author)
Verlag: Springer International Publishing 2016-07-27, Berlin (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: 10
Anbieter
Blackwell's
(Oxford, OX, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Springer International Publishing 2016-07-27, Berlin, 2016. hardback. Zustand: New. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 104,12
Währung umrechnen

In den Warenkorb

Versand: EUR 6,85
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

4.

Gabriel Ciobanu
Verlag: Springer International Publishing AG
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: > 20
Anbieter
BuySomeBooks
(Las Vegas, NV, USA)
Bewertung
[?]

Buchbeschreibung Springer International Publishing AG. Hardcover. Zustand: New. In this book the authors present an alternative set theory dealing with a more relaxed notion of (in)finiteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessary countable as for nominal sets). In FSM, sets are replaced either by invariant sets (sets endowed with some group actions satisfying a finite support requirement) or by finitely supported sets (finitely supported elements in the powerset of an invariant set). It is a theory of invariant algebraic structures in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski logical notions and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e. g. , fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Hardcover. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 113,01
Währung umrechnen

In den Warenkorb

Versand: Gratis
Innerhalb USA
Versandziele, Kosten & Dauer

5.

Alexandru, Andrei
Verlag: Springer International Publishing AG (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: > 20
Print-on-Demand
Anbieter
Pbshop
(Wood Dale, IL, USA)
Bewertung
[?]

Buchbeschreibung Springer International Publishing AG, 2016. HRD. Zustand: New. New Book. Shipped from US within 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers IQ-9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 110,72
Währung umrechnen

In den Warenkorb

Versand: EUR 3,44
Innerhalb USA
Versandziele, Kosten & Dauer

6.

Alexandru, Andrei (Author)/ Ciobanu, Gabriel (Author)
Verlag: Springer (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: 2
Anbieter
Revaluation Books
(Exeter, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Springer, 2016. Hardcover. Zustand: Brand New. 9.50x6.50x0.75 inches. In Stock. Bestandsnummer des Verkäufers __3319422812

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 105,80
Währung umrechnen

In den Warenkorb

Versand: EUR 8,56
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

7.

ANDREI ALEXANDRU
Verlag: Springer (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Hardcover Anzahl: 1
Anbieter
Herb Tandree Philosophy Books
(Stroud, GLOS, Vereinigtes Königreich)
Bewertung
[?]

Buchbeschreibung Springer, 2016. Hardback. Zustand: NEW. 9783319422817 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. For all enquiries, please contact Herb Tandree Philosophy Books directly - customer service is our primary goal. Bestandsnummer des Verkäufers HTANDREE01109562

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 105,81
Währung umrechnen

In den Warenkorb

Versand: EUR 9,13
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

8.

Andrei Alexandru; Gabriel Ciobanu
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 5
Anbieter
ReadWhiz
(Portland, OR, USA)
Bewertung
[?]

Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers ria9783319422817_ing

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 116,57
Währung umrechnen

In den Warenkorb

Versand: Gratis
Innerhalb USA
Versandziele, Kosten & Dauer

9.

Andrei Alexandru
Verlag: Springer-Verlag Gmbh Aug 2016 (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 1
Anbieter
Bewertung
[?]

Buchbeschreibung Springer-Verlag Gmbh Aug 2016, 2016. Buch. Zustand: Neu. Neuware - In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. 185 pp. Englisch. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 106,99
Währung umrechnen

In den Warenkorb

Versand: EUR 12,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

10.

Andrei Alexandru
Verlag: Springer-Verlag Gmbh Aug 2016 (2016)
ISBN 10: 3319422812 ISBN 13: 9783319422817
Neu Anzahl: 1
Anbieter
Rheinberg-Buch
(Bergisch Gladbach, Deutschland)
Bewertung
[?]

Buchbeschreibung Springer-Verlag Gmbh Aug 2016, 2016. Buch. Zustand: Neu. Neuware - In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. 185 pp. Englisch. Bestandsnummer des Verkäufers 9783319422817

Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren

Neu kaufen
EUR 106,99
Währung umrechnen

In den Warenkorb

Versand: EUR 17,13
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Es gibt weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen