Verwandte Artikel zu Multiple Instance Learning: Foundations and Algorithms

Multiple Instance Learning: Foundations and Algorithms - Hardcover

 
9783319477589: Multiple Instance Learning: Foundations and Algorithms

Inhaltsangabe

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included.

This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined.

Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. 

This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included.
This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined.
Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. 
This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 2,27 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 2,27 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319838151: Multiple Instance Learning: Foundations and Algorithms

Vorgestellte Ausgabe

ISBN 10:  3319838156 ISBN 13:  9783319838151
Verlag: Springer, 2018
Softcover

Suchergebnisse für Multiple Instance Learning: Foundations and Algorithms

Foto des Verkäufers

Herrera, Francisco; Ventura, Sebastián; Bello, Rafael; Cornelis, Chris; Zafra, Amelia
Verlag: Springer, 2016
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 27728558-n

Verkäufer kontaktieren

Neu kaufen

EUR 102,53
Währung umrechnen
Versand: EUR 2,27
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Francisco Herrera
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover Erstausgabe

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included.This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined.Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools. This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783319477589

Verkäufer kontaktieren

Neu kaufen

EUR 104,86
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Herrera, Francisco; Ventura, Sebastián; Bello, Rafael; Cornelis, Chris; Zafra, Amelia; Sánchez-Tarragó, Dánel; Vluymans, Sarah
Verlag: Springer, 2016
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020098563

Verkäufer kontaktieren

Neu kaufen

EUR 103,13
Währung umrechnen
Versand: EUR 3,43
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Herrera, Francisco; Ventura, Sebastián; Bello, Rafael; Cornelis, Chris; Zafra, Amelia
Verlag: Springer, 2016
ISBN 10: 3319477587 ISBN 13: 9783319477589
Gebraucht Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 27728558

Verkäufer kontaktieren

Gebraucht kaufen

EUR 121,96
Währung umrechnen
Versand: EUR 2,27
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Herrera, Francisco; Ventura, Sebastián; Bello, Rafael; Cornelis, Chris; Zafra, Amelia; Sánchez-Tarragó, Dánel; Vluymans, Sarah
Verlag: Springer, 2016
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783319477589_new

Verkäufer kontaktieren

Neu kaufen

EUR 111,72
Währung umrechnen
Versand: EUR 13,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Herrera, Francisco; Ventura, Sebastián; Bello, Rafael; Cornelis, Chris; Zafra, Amelia
Verlag: Springer, 2016
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 27728558-n

Verkäufer kontaktieren

Neu kaufen

EUR 111,71
Währung umrechnen
Versand: EUR 17,28
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Francisco Herrera
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included.This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined.Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously.This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools. 248 pp. Englisch. Bestandsnummer des Verkäufers 9783319477589

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Herrera, Francisco; Ventura, Sebastián; Bello, Rafael; Cornelis, Chris; Zafra, Amelia; Sánchez-Tarragó, Dánel; Vluymans, Sarah
Verlag: Springer, 2016
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26378083241

Verkäufer kontaktieren

Neu kaufen

EUR 132,01
Währung umrechnen
Versand: EUR 3,43
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Herrera, Francisco; Ventura, Sebastian; Bello, Rafael; Cornelis, Chris; Zafra, Amelia; Sanchez-Tarrago, Danel; Vluymans, Sarah
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover

Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Num Pages: 233 pages, 6 black & white illustrations, 40 colour illustrations, biography. BIC Classification: UG; UMB; UYQM; UYT. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 16. Weight in Grams: 537. . 2016. Hardback. . . . . Bestandsnummer des Verkäufers V9783319477589

Verkäufer kontaktieren

Neu kaufen

EUR 129,92
Währung umrechnen
Versand: EUR 10,50
Von Irland nach USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

Francisco Herrera|Sebastián Ventura|Rafael Bello|Chris Cornelis|Amelia Zafra|Dánel Sánchez-Tarragó|Sarah Vluymans
ISBN 10: 3319477587 ISBN 13: 9783319477589
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive overview of multiple instance learning widely used to classify and label texts, pictures, videos and music in the InternetProvides the user with the most relevant algorithms for MIL and the most represen. Bestandsnummer des Verkäufers 130397246

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 9 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen