This book is an extension of the author's first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.
The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes' theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem-as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes. It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jeff Grover, Doctor of Business Administration (DBA) (Finance), is Founder and Chief Research Scientist at Grover Group, Inc., where he specializes in Bayes’ Theorem and its application to strategic economic decision making through Bayesian Belief Networks (BBN). He specializes in blending economic theory and BBN to maximize stakeholder wealth. He is a winner of the Kentucky Innovation Award (2015) for the application of his proprietary BBN big data algorithm. He has operationalized BBN in the healthcare industry, evaluating the Medicare “Hospital Compare” data; in the Department of Defense, conducting research with U.S. Army Recruiting Command to determine optimal levels of required recruiters for recruiting niche market medical professionals; and in the agriculture industry in optimal soybean selection. In the area of economics, he was recently contracted by the Department of Energy, The Alliance for Sustainable Energy, LLC Management and Operating Contractor for the National Renewable Energy Laboratory, to conduct a 3rd party evaluation of the Hydrogen Financial Analysis Scenario (H2FAST) Tool.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
XXVIII, 260 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Bestandsnummer des Verkäufers 848MB
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 130396571
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an extension of the author's first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes' theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem-as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in theirdecision-making processes.It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants. Bestandsnummer des Verkäufers 9783319484136
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book is an extension of the author¿s first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes¿ theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem¿as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes.It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 288 pp. Englisch. Bestandsnummer des Verkäufers 9783319484136
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an extension of the author's first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes' theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem-as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in theirdecision-making processes. It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants. 288 pp. Englisch. Bestandsnummer des Verkäufers 9783319484136
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783319484136_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 27876748-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 27876748-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783319484136
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 27876748
Anzahl: Mehr als 20 verfügbar