The quantity, diversity and availability of transport data is increasing rapidly, requiring new skills in the management and interrogation of data and databases. Recent years have seen a new wave of 'big data', 'Data Science', and 'smart cities' changing the world, with the Harvard Business Review describing Data Science as the "sexiest job of the 21st century". Transportation professionals and researchers need to be able to use data and databases in order to establish quantitative, empirical facts, and to validate and challenge their mathematical models, whose axioms have traditionally often been assumed rather than rigorously tested against data. This book takes a highly practical approach to learning about Data Science tools and their application to investigating transport issues. The focus is principally on practical, professional work with real data and tools, including business and ethical issues.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Charles Fox is a University Academic Fellow in Vehicle and Road Automation at the Institute for Transport Studies, University of Leeds. He researches autonomous off-road, on-road, and road-side perception, control and data analytics systems, using primarily Bayesian methods. Recent projects include IBEX2 off-road autonomous agricultural vehicles, featured in The Times and on the Discovery Channel; INTERACT pedestrian detection analytics for autonomous vehicles, with BMW; UDRIVE data mining of manual car driving big data to identify causes of dangerous driving, with Volvo; and Automated Number Plate Recognition analytics for Mouchel and the Highways Agency.
This book offers a unique introduction to the application of data science for transport professionals and students of transport studies. Based on a course taught by the Leeds Institute for Transport Studies, the world’s leading center for training transport professionals, it represents the first textbook in this new area.
As transportation planning has become increasingly data-driven, all graduate students and transport professionals urgently need to update their skills to include databases, machine learning, Bayesian statistics, geographic information system (GIS), and big data tools. Similarly, transport professionals including national and local government planners, transport consultants, and car company engineers are called upon to integrate these disparate areas with a specific focus on transportation issues, such as maps.
The textbook also features a downloadable software package with all of the open source tools and libraries used in code examples throughoutthe book, including Python, Spyder, PostGIS, PyMC and GPy installations. As such, it offers a unique resource for graduate/advanced undergraduate students and instructors in transportation studies, urban and regional planning, engineering and geography, as well as transportation professionals.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: HPB-Red, Dallas, TX, USA
hardcover. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_380683732
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Hardcover. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Bestandsnummer des Verkäufers G3319729527I4N00
Anzahl: 1 verfügbar
Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
Hardcover. Zustand: Very Good. Data Science for Transport: A Self-Study Guide with Computer Exercises (Springer Textbooks in Earth Sciences, Geography and Environment) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Bestandsnummer des Verkäufers 7719-9783319729527
Anzahl: 2 verfügbar
Anbieter: Bahamut Media, Reading, Vereinigtes Königreich
Hardcover. Zustand: Very Good. This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Bestandsnummer des Verkäufers 6545-9783319729527
Anzahl: 2 verfügbar
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
xvii, 185 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Bestandsnummer des Verkäufers 4553BB
Anzahl: 5 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Bestandsnummer des Verkäufers ria9783319729527_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Hardback. Zustand: New. 1st ed. 2018. Bestandsnummer des Verkäufers LU-9783319729527
Anzahl: Mehr als 20 verfügbar
Anbieter: Toscana Books, AUSTIN, TX, USA
Hardcover. Zustand: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Bestandsnummer des Verkäufers Scanned3319729527
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020104323
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 30562974
Anzahl: 15 verfügbar