Verwandte Artikel zu Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets - Hardcover

 
9783319980737: Learning from Imbalanced Data Sets

Inhaltsangabe

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,20 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

EUR 19,62 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030074463: Learning from Imbalanced Data Sets

Vorgestellte Ausgabe

ISBN 10:  3030074463 ISBN 13:  9783030074463
Verlag: Springer, 2019
Softcover

Suchergebnisse für Learning from Imbalanced Data Sets

Beispielbild für diese ISBN

Alberto Fernandez
Verlag: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover

Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. *Price HAS BEEN temporarily REDUCED by 10% until Monday, Oct. 6 (sale item)* 396 pp., hardcover, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Photos available upon request. Bestandsnummer des Verkäufers ZB1317814

Verkäufer kontaktieren

Neu kaufen

EUR 111,38
Währung umrechnen
Versand: EUR 19,62
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alberto Fernández|Salvador García|Mikel Galar|Ronaldo C. Prati|Bartosz Krawczyk|Francisco Herrera
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive review of imbalanced learning widely used worldwide in many real applications,&nbspsuch as fraud detection, disease diagnosis, etcProvides the user with the required background and software tools&nbsp needed to deal. Bestandsnummer des Verkäufers 234946118

Verkäufer kontaktieren

Neu kaufen

EUR 136,16
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fernández
Verlag: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783319980737_new

Verkäufer kontaktieren

Neu kaufen

EUR 152,16
Währung umrechnen
Versand: EUR 5,71
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 396 pp. Englisch. Bestandsnummer des Verkäufers 9783319980737

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a general and comprehensibleoverview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considersthe different scenarios in Data Science for which the imbalanced classification cancreate a real challenge.This book stresses the gap with standard classification tasks by reviewing the casestudies and ad-hoc performance metrics that are applied in this area. It also covers thedifferent approaches that have been traditionally applied to address the binaryskewed class distribution. Specifically, it reviews cost-sensitive learning, data-levelpreprocessing methods and algorithm-level solutions, taking also into account thoseensemble-learning solutions that embed any of the former alternatives. Furthermore, itfocuses on the extension of the problem for multi-class problems, where the formerclassical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causeswhich, added to the uneven class distribution, truly hinders the performance ofclassification algorithms in this scenario. Then, some notes on data reduction areprovided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attentionon the imbalanced data issue. Specifically, it considers the classification of data streams,non-classical classification problems, and the scalability related to Big Data. Examplesof software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, seniorundergraduate and graduatestudents in the areas of data science,computer science and engineering.It will also be useful for scientists and researchers to gain insight on the currentdevelopments in this area of study, as well as future research directions. Bestandsnummer des Verkäufers 9783319980737

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a general and comprehensibleoverview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considersthe different scenarios in Data Science for which the imbalanced classification cancreate a real challenge.This book stresses the gap with standard classification tasks by reviewing the casestudies and ad-hoc performance metrics that are applied in this area. It also covers thedifferent approaches that have been traditionally applied to address the binaryskewed class distribution. Specifically, it reviews cost-sensitive learning, data-levelpreprocessing methods and algorithm-level solutions, taking also into account thoseensemble-learning solutions that embed any of the former alternatives. Furthermore, itfocuses on the extension of the problem for multi-class problems, where the formerclassical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causeswhich, added to the uneven class distribution, truly hinders the performance ofclassification algorithms in this scenario. Then, some notes on data reduction areprovided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attentionon the imbalanced data issue. Specifically, it considers the classification of data streams,non-classical classification problems, and the scalability related to Big Data. Examplesof software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, seniorundergraduate and graduatestudents in the areas of data science,computer science and engineering.It will also be useful for scientists and researchers to gain insight on the currentdevelopments in this area of study, as well as future research directions. 396 pp. Englisch. Bestandsnummer des Verkäufers 9783319980737

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Verlag: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 33408471-n

Verkäufer kontaktieren

Neu kaufen

EUR 152,15
Währung umrechnen
Versand: EUR 17,20
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Verlag: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 33408471-n

Verkäufer kontaktieren

Neu kaufen

EUR 153,88
Währung umrechnen
Versand: EUR 17,05
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fernández
Verlag: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Neu Hardcover

Anbieter: Best Price, Torrance, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783319980737

Verkäufer kontaktieren

Neu kaufen

EUR 148,32
Währung umrechnen
Versand: EUR 25,57
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Verlag: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Gebraucht Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 33408471

Verkäufer kontaktieren

Gebraucht kaufen

EUR 166,54
Währung umrechnen
Versand: EUR 17,20
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 10 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen