<DIV><P>THIS BOOK COMPILES LEADING RESEARCH ON THE DEVELOPMENT OF EXPLAINABLE AND INTERPRETABLE MACHINE LEARNING METHODS IN THE CONTEXT OF COMPUTER VISION AND MACHINE LEARNING.</P><P></P> <P>RESEARCH PROGRESS IN COMPUTER VISION AND PATTERN RECOGNITION HAS LED TO A VARIETY OF MODELING TECHNIQUES WITH ALMOST HUMAN-LIKE PERFORMANCE. ALTHOUGH THESE MODELS HAVE OBTAINED ASTOUNDING RESULTS, THEY ARE LIMITED IN THEIR EXPLAINABILITY AND INTERPRETABILITY: WHAT IS THE RATIONALE BEHIND THE DECISION MADE? WHAT IN THE MODEL STRUCTURE EXPLAINS ITS FUNCTIONING? HENCE, WHILE GOOD PERFORMANCE IS A CRITICAL REQUIRED CHARACTERISTIC FOR LEARNING MACHINES, EXPLAINABILITY AND INTERPRETABILITY CAPABILITIES ARE NEEDED TO TAKE LEARNING MACHINES TO THE NEXT STEP TO INCLUDE THEM IN DECISION SUPPORT SYSTEMS INVOLVING HUMAN SUPERVISION.&NBSP; &NBSP;</P> <P>&NBSP;THIS BOOK, WRITTEN BY LEADING INTERNATIONAL RESEARCHERS, ADDRESSES KEY TOPICS OF EXPLAINABILITY AND INTERPRETABILITY, INCLUDING THE FOLLOWING:</P> <P>&NBSP;</P> <P>·&NBSP; &NBSP; &NBSP; &NBSP; &NBSP;EVALUATION AND GENERALIZATION IN INTERPRETABLE MACHINE LEARNING</P> <P>·&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP; EXPLANATION METHODS IN DEEP LEARNING</P> <P>·&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP; LEARNING FUNCTIONAL CAUSAL MODELS WITH GENERATIVE NEURAL NETWORKS</P> <P>·&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP; LEARNING INTERPREATABLE RULES FOR MULTI-LABEL CLASSIFICATION</P> <P>·&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP; STRUCTURING NEURAL NETWORKS FOR MORE EXPLAINABLE PREDICTIONS</P> <P>·&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP;&NBSP; GENERATING POST HOC RATIONALES OF
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.
Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision.
This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following:
· Evaluation and Generalization in Interpretable Machine Learning
· Explanation Methods in Deep Learning
· Learning Functional Causal Models with Generative Neural Networks
· Learning Interpreatable Rules for Multi-Label Classification
· Structuring Neural Networks for More Explainable Predictions
· Generating Post Hoc Rationales of Deep Visual Classification Decisions
· Ensembling Visual Explanations
· Explainable Deep Driving by Visualizing Causal Attention
· Interdisciplinary Perspective on Algorithmic Job Candidate Search
· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions
· Inherent Explainability Pattern Theory-based Video Event Interpretations
Placeholder.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 30,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 48,99 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
XVII, 299 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. The Springer Series on Challenges in Machine Learning. Sprache: Englisch. Bestandsnummer des Verkäufers 34532AB
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Presents a snapshot of explainable and interpretable models in the context of computer vision and machine learningCovers fundamental topics to serve as a reference for newcomers to the fieldOffers successful methodologies, with appli. Bestandsnummer des Verkäufers 266307510
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made what in the model structure explains its functioning Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: Evaluation and Generalization in Interpretable Machine Learning Explanation Methods in Deep Learning Learning Functional Causal Models with Generative Neural Networks Learning Interpreatable Rules for Multi-Label Classification Structuring Neural Networks for More Explainable Predictions Generating Post Hoc Rationales of Deep Visual Classification Decisions Ensembling Visual Explanations Explainable Deep Driving by Visualizing Causal Attention Interdisciplinary Perspective on Algorithmic Job Candidate Search Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions Inherent Explainability Pattern Theory-based Video Event Interpretations 299 pp. Englisch. Bestandsnummer des Verkäufers 9783319981307
Anzahl: 1 verfügbar
Anbieter: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made what in the model structure explains its functioning Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: Evaluation and Generalization in Interpretable Machine Learning Explanation Methods in Deep Learning Learning Functional Causal Models with Generative Neural Networks Learning Interpreatable Rules for Multi-Label Classification Structuring Neural Networks for More Explainable Predictions Generating Post Hoc Rationales of Deep Visual Classification Decisions Ensembling Visual Explanations Explainable Deep Driving by Visualizing Causal Attention Interdisciplinary Perspective on Algorithmic Job Candidate Search Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions Inherent Explainability Pattern Theory-based Video Event Interpretations 299 pp. Englisch. Bestandsnummer des Verkäufers 9783319981307
Anzahl: 1 verfügbar
Anbieter: Wegmann1855, Zwiesel, Deutschland
Bündel. Zustand: Neu. Neuware -This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Bestandsnummer des Verkäufers 9783319981307
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made what in the model structure explains its functioning Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: Evaluation and Generalization in Interpretable Machine Learning Explanation Methods in Deep Learning Learning Functional Causal Models with Generative Neural Networks Learning Interpreatable Rules for Multi-Label Classification Structuring Neural Networks for More Explainable Predictions Generating Post Hoc Rationales of Deep Visual Classification Decisions Ensembling Visual Explanations Explainable Deep Driving by Visualizing Causal Attention Interdisciplinary Perspective on Algorithmic Job Candidate Search Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions Inherent Explainability Pattern Theory-based Video Event Interpretations. Bestandsnummer des Verkäufers 9783319981307
Anzahl: 1 verfügbar
Anbieter: Grand Eagle Retail, Fairfield, OH, USA
Book & Merchandise. Zustand: new. Book & Merchandise. This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: Evaluation and Generalization in Interpretable Machine Learning Explanation Methods in Deep Learning Learning Functional Causal Models with Generative Neural Networks Learning Interpreatable Rules for Multi-Label Classification Structuring Neural Networks for More Explainable Predictions Generating Post Hoc Rationales of Deep Visual Classification Decisions Ensembling Visual Explanations Explainable Deep Driving by Visualizing Causal Attention Interdisciplinary Perspective on Algorithmic Job Candidate Search Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions Inherent Explainability Pattern Theory-based Video Event Interpretations Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783319981307
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. pap/psc edition. 299 pages. 9.25x6.10x0.79 inches. In Stock. Bestandsnummer des Verkäufers x-3319981307
Anzahl: 2 verfügbar