This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare.
Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Pieter Kubben is a neurosurgeon, mobile app developer and programme manager for eHealth and mHealth for the Maastricht University Medical Center. Telemonitoring and corresponding algorithm development is a particular focus area Dr Kubben is involved in, as well as interactive clinical decision support systems.
Michel Dumontier is a distuinguished professor of data science at Maastricht University and head of the Institute for Data Science – connecting data science initiatives and projects from all faculties. He is also deeply involved in the FAIR data approach (Findable, Accessible, Interoperable, Reproducible).
André Dekker is a professor of clinical data science at Maastricht University and has been leading the development of prediction models in radiation therapy for many years. He is also coordinator of the Personal Health Train project, aiming to facilitate “citizen science”.
.This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare.
Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book's promise is "no math, no code"and will explain the topics in a style that is optimized for a healthcare audience.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Brook Bookstore, Milano, MI, Italien
Zustand: new. Bestandsnummer des Verkäufers 19c644a229baf35c610f9cbaf08631d9
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 33428840-n
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9783319997124
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9783319997124
Anzahl: 3 verfügbar
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Bestandsnummer des Verkäufers 19c644a229baf35c610f9cbaf08631d9
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 33428840
Anzahl: Mehr als 20 verfügbar
Anbieter: SpringBooks, Berlin, Deutschland
Hardcover. Zustand: Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany. Bestandsnummer des Verkäufers CE-2402C-KAEFER-07-1000XS
Anzahl: 1 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare.Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The books promise is no math, no codeand will explain the topics in a style that is optimized for a healthcare audience. This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783319997124
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. VIII, 219 45 illus., 35 illus. in color. Bestandsnummer des Verkäufers 379347182
Anzahl: 3 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 33428840-n
Anzahl: 4 verfügbar