Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Jiguo Cao is the Canada Research Chair in Data Science and associate professor at the Department of Statistics and Actuarial Science, Simon Fraser University. His research interests include developing novel statistical methodologies and applications in functional data analysis and estimating parameters in differential equations from real data.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations. 240 pp. Englisch. Bestandsnummer des Verkäufers 9783330072381
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Cao JiguoDr. Jiguo Cao is the Canada Research Chair in Data Science and associate professor at the Department of Statistics and Actuarial Science, Simon Fraser University. His research interests include developing novel statistical m. Bestandsnummer des Verkäufers 151236336
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 240 pages. 8.66x5.91x0.55 inches. In Stock. Bestandsnummer des Verkäufers 3330072385
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Parameter Cascading Method for Functional Data Analysis | Adaptive Penalized Smoothing, Estimating Semiparametric Additive Models and Inferring Differential Equation Models | Jiguo Cao | Taschenbuch | 240 S. | Englisch | 2017 | LAP LAMBERT Academic Publishing | EAN 9783330072381 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 109037245
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations.Books on Demand GmbH, Überseering 33, 22297 Hamburg 240 pp. Englisch. Bestandsnummer des Verkäufers 9783330072381
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many statistical models involve three distinct groups of variables: local or nuisance parameters, global or structural parameters, and complexity parameters. In this book, we introduce the parameter cascading method to estimate these statistical models, which treats one group of parameters as an explicit or implicit function of other parameters. The dimensionality of the parameter space is reduced, and the optimization surface becomes smoother. The Newton-Raphson algorithm is applied to estimate these three distinct groups of parameters in three levels of optimization, with the gradients and Hessian matrices written out analytically by the Implicit Function Theorem if necessary and allowing for different criteria for each level of optimization. Moreover, variances of global parameters are estimated by the Delta method and include the variation coming from complexity parameters. We also propose three applications of the parameter cascading method in functional data analysis, include adaptive penalized smoothing, estimating the generalized semiparametric additive models and inferring parameters in differential equations. Bestandsnummer des Verkäufers 9783330072381
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
paperback. Zustand: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Bestandsnummer des Verkäufers ERICA82933300723856
Anzahl: 1 verfügbar