Fachbuch aus dem Jahr 2019 im Fachbereich Medien / Kommunikation - Fachkommunikation, Sprache, Note: 2,0, Karlsruher Institut für Technologie (KIT), Sprache: Deutsch, Abstract: Rasenroboter oder Staubsauger-Roboter gehören heute für viele Menschen zum Alltag - auch wenn das vor einigen Jahren noch kaum vorstellbar gewesen wäre. Die Forschung schreitet voran und auch auf dem Arbeitsmarkt soll in Zukunft vieles Maschinen abgegeben werden, wie zum Beispiel die Altenpflege oder das Vorbereiten von Gerichtsentscheiden. Auch das Verarbeiten und Verstehen komplexer sprachlicher Aussagen und Informationen ist Teil der künstlichen Intelligenz. Bisher wurden sprachliche Aussagen mit Symbolen in Schallform oder schriftlicher Form verarbeitet. Dieses Modell des diskreten Sprachgebrauchs hatte den Vorteil, dass Symbole eindeutig sind, da es ein Regelsystem für diese Symbole gibt. Bisherige Engstellen waren der zu geringe Speicherplatz und der fehlende Kontext bei der Sprachverarbeitung, da dafür mehr Variablen notwendig gewesen wären. Das zentrale Hauptproblem war jedoch, dass die Maschinen nicht selbst gelernt haben, sondern nur so intelligent waren, wie die Person, die sie programmiert hat. Diese Probleme können mit dem Machine Learning und dem Deep Learning überwunden werden, wie genau das funktioniert wird im zweiten Punkt dieser Arbeit erläutert. Das Deep Learning wurde im Seminar anhand von Deep-Learning-Ansätzen des Natural Language Processing, kurz NLP, erklärt. Das NLP ist eine der wichtigsten Technologien des Informationszeitalters. Da Sprache ein wesentlicher Bestandteil der menschlichen Kommunikation ist, gibt es zahlreiche Anwendungsgebiete von NLP, wie zum Beispiel die Sprachübersetzung, E-Mails oder Werbung. Neben den Deep-Learning-Ansätzen gibt es zahlreiche weitere maschinelle Lernmodelle für NLP, die Deep-Learning-Ansätze haben jedoch aktuell mit hohen Leistungen bei NLP-Aufgaben überzeugt. In dieser Arbeit wird zunächst das Deep Learning definiert, vom Mac
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,25 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Natural Language Processing mit Deep Learning | Amelie Probst | Taschenbuch | 16 S. | Deutsch | 2019 | GRIN Verlag | EAN 9783346017444 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 117484744
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers DB-9783346017444
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware. Bestandsnummer des Verkäufers 9783346017444
Anzahl: 2 verfügbar
Anbieter: Wegmann1855, Zwiesel, Deutschland
Taschenbuch. Zustand: Neu. Neuware. Bestandsnummer des Verkäufers 9783346017444
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers DB-9783346017444
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38572990
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 16 pages. German language. 8.66x5.91x0.39 inches. In Stock. Bestandsnummer des Verkäufers __3346017443
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 38572990-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 38572990-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38572990
Anzahl: 1 verfügbar