The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,99 für den Versand von Frankreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Ammareal, Morangis, Frankreich
Softcover. Zustand: Bon. Ancien livre de bibliothèque. Petite(s) trace(s) de pliure sur la couverture. Légères traces d'usure sur la couverture. Couverture légèrement déchirée. Salissures sur la tranche. Pages cornées. Edition 1970. Tome 33. Ammareal reverse jusqu'à 15% du prix n ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slightly creased cover. Slight signs of wear on the cover. Slightly torn cover. Stains on the edge. Dog-eared pages. Edition 1970. Volume 33. Ammareal gives back up to 15% of this item's net price to charity organizations. Bestandsnummer des Verkäufers E-566-943
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes th. Bestandsnummer des Verkäufers 4878620
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 172 pp. Englisch. Bestandsnummer des Verkäufers 9783540049562
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results. Bestandsnummer des Verkäufers 9783540049562
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The present work is an extended version of a manuscript of a course which the author taught at the University of Hamburg during summer 1969. The main purpose has been to give a rigorous foundation of stochastic dynamic programming in a manner which makes the theory easily applicable to many different practical problems. We mention the following features which should serve our purpose. a) The theory is built up for non-stationary models, thus making it possible to treat e.g. dynamic programming under risk, dynamic programming under uncertainty, Markovian models, stationary models, and models with finite horizon from a unified point of view. b) We use that notion of optimality (p-optimality) which seems to be most appropriate for practical purposes. c) Since we restrict ourselves to the foundations, we did not include practical problems and ways to their numerical solution, but we give (cf.section 8) a number of problems which show the diversity of structures accessible to non stationary dynamic programming. The main sources were the papers of Blackwell (65), Strauch (66) and Maitra (68) on stationary models with general state and action spaces and the papers of Dynkin (65), Hinderer (67) and Sirjaev (67) on non-stationary models. A number of results should be new, whereas most theorems constitute extensions (usually from stationary models to non-stationary models) or analogues to known results. 172 pp. Englisch. Bestandsnummer des Verkäufers 9783540049562
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540049562_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783540049562
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783540049562
Anzahl: 10 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 172 pages. 10.00x7.01x0.39 inches. In Stock. Bestandsnummer des Verkäufers x-3540049568
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020156731
Anzahl: Mehr als 20 verfügbar