Verwandte Artikel zu Theta Functions: 194 (Grundlehren der Mathematischen...

Theta Functions: 194 (Grundlehren der Mathematischen Wissenschaften) - Hardcover

 
9783540056997: Theta Functions: 194 (Grundlehren der Mathematischen Wissenschaften)

Inhaltsangabe

The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ("Sources" [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti- fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in "On the compactification of the Siegel space", J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ("Sources" [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti- fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in "On the compactification of the Siegel space", J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut bis sehr gut
Berlin, Springer 1972. X, 232 p...
Diesen Artikel anzeigen

EUR 20,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783642653179: Theta Functions: 194 (Grundlehren der mathematischen Wissenschaften)

Vorgestellte Ausgabe

ISBN 10:  3642653170 ISBN 13:  9783642653179
Verlag: Springer, 2011
Softcover

Suchergebnisse für Theta Functions: 194 (Grundlehren der Mathematischen...

Beispielbild für diese ISBN

IGUSA, Jun-Ichi
Verlag: Springer, Berlin, 1972
ISBN 10: 3540056998 ISBN 13: 9783540056997
Gebraucht Hardcover

Anbieter: Antiquariat Renner OHG, Albstadt, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Sehr gut. Berlin, Springer 1972. X, 232 p. OCloth. with dust jacket. Grundlehren der Mathematischen Wissenschaften, 194.- Slightly stained, otherwise in very good condition. Bestandsnummer des Verkäufers 9970

Verkäufer kontaktieren

Gebraucht kaufen

EUR 65,00
Währung umrechnen
Versand: EUR 20,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb