Verwandte Artikel zu Integral Geometry and Inverse Problems for Hyperbolic...

Integral Geometry and Inverse Problems for Hyperbolic Equations: 26 (Springer Tracts in Natural Philosophy) - Hardcover

 
9783540064299: Integral Geometry and Inverse Problems for Hyperbolic Equations: 26 (Springer Tracts in Natural Philosophy)

Inhaltsangabe

There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re- search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solution on the data is retained but it is interpreted differently. It is required that solutions depend continuously only on that data which does not take the solutions out of M.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re­ search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solution on the data is retained but it is interpreted differently. It is required that solutions depend continuously only on that data which does not take the solutions out of M.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
151 Seiten Das Buch befindet sich...
Diesen Artikel anzeigen

EUR 3,20 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783642807831: Integral Geometry and Inverse Problems for Hyperbolic Equations: 26 (Springer Tracts in Natural Philosophy)

Vorgestellte Ausgabe

ISBN 10:  3642807836 ISBN 13:  9783642807831
Verlag: Springer, 2012
Softcover

Suchergebnisse für Integral Geometry and Inverse Problems for Hyperbolic...

Foto des Verkäufers

Romanov, V. G.:
Verlag: Springer, 1974
ISBN 10: 354006429X ISBN 13: 9783540064299
Gebraucht Hardcover

Anbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

gebundene Ausgabe. Zustand: Gut. 151 Seiten Das Buch befindet sich in einem ordentlich erhaltenen Zustand. ENGLISCH. Sprache: Englisch Gewicht in Gramm: 350. Bestandsnummer des Verkäufers 1725109

Verkäufer kontaktieren

Gebraucht kaufen

EUR 31,95
Währung umrechnen
Versand: EUR 3,20
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb