Book by Hwang C L
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . ,. ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 14,12 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,56 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Poor. Volume 164. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,750grams, ISBN:3540091114. Bestandsnummer des Verkäufers 7087993
Anzahl: 1 verfügbar
Anbieter: Antiquariat Deinbacher, Murstetten, Österreich
8° , Softcover/Paperback. 1.Auflage,. XII, 351 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783540091110 Sprache: Englisch Gewicht in Gramm: 588. Bestandsnummer des Verkäufers 154184
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020158391
Anzahl: Mehr als 20 verfügbar
Anbieter: NEPO UG, Rüsselsheim am Main, Deutschland
Taschenbuch. Zustand: Gut. 372 Seiten ex Library Book / aus einer wissenschafltichen Bibliothek / Sprache: Englisch. Bestandsnummer des Verkäufers 326677
Anzahl: 1 verfügbar
Anbieter: NEPO UG, Rüsselsheim am Main, Deutschland
Zustand: Gut. 372 Seiten ex Library Book / aus einer wissenschafltichen Bibliothek / Altersfreigabe FSK ab 0 Jahre Sprache: Englisch Gewicht in Gramm: 969 24,4 x 17,0 x 2,1 cm, Taschenbuch. Bestandsnummer des Verkäufers 366354
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540091110_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . , ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together. 372 pp. Englisch. Bestandsnummer des Verkäufers 9783540091110
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . , ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together. Bestandsnummer des Verkäufers 9783540091110
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 372. Bestandsnummer des Verkäufers 2654513216
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 372 39 Figures, 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 55079327
Anzahl: 4 verfügbar