This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course.
This is a quite exceptional book, a lively and approachable treatment of an important field of mathematics given in a masterly style. Assuming only a school background, the authors develop locally Euclidean geometries, going as far as the modular space of structures on the torus, treated in terms of Lobachevsky's non-Euclidean geometry. Each section is carefully motivated by discussion of the physical and general scientific implications of the mathematical argument, and its place in the history of mathematics and philosophy. The book is expected to find a place alongside classics such as Hilbert and Cohn-Vossen's "Geometry and the imagination" and Weyl's "Symmetry".
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,95 für den Versand von Niederlande nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Klondyke, Almere, Niederlande
Zustand: Good. Paperback, illustrated with numerous equations, graphs and diagrams, 8vo. Universitext.; Name in pen on title page. Bestandsnummer des Verkäufers 341013-ZA16
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a gen. Bestandsnummer des Verkäufers 4882568
Anzahl: Mehr als 20 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In fair condition, suitable as a study copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,500grams, ISBN:3540152814. Bestandsnummer des Verkäufers 4324971
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In fair condition, suitable as a study copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,500grams, ISBN:9783540152811. Bestandsnummer des Verkäufers 4324967
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Poor. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,500grams, ISBN:3540152814. Bestandsnummer des Verkäufers 4324972
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 264 pp. Englisch. Bestandsnummer des Verkäufers 9783540152811
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is a quite exceptional book, a lively and approachable treatment of an important field of mathematics given in a masterly style. Assuming only a school background, the authors develop locally Euclidean geometries, going as far as the modular space of structures on the torus, treated in terms of Lobachevsky's non-Euclidean geometry. Each section is carefully motivated by discussion of the physical and general scientific implications of the mathematical argument, and its place in the history of mathematics and philosophy. The book is expected to find a place alongside classics such as Hilbert and Cohn-Vossen's 'Geometry and the imagination' and Weyl's 'Symmetry'. Bestandsnummer des Verkäufers 9783540152811
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is a quite exceptional book, a lively and approachable treatment of an important field of mathematics given in a masterly style. Assuming only a school background, the authors develop locally Euclidean geometries, going as far as the modular space of structures on the torus, treated in terms of Lobachevsky's non-Euclidean geometry. Each section is carefully motivated by discussion of the physical and general scientific implications of the mathematical argument, and its place in the history of mathematics and philosophy. The book is expected to find a place alongside classics such as Hilbert and Cohn-Vossen's 'Geometry and the imagination' and Weyl's 'Symmetry'. 264 pp. Englisch. Bestandsnummer des Verkäufers 9783540152811
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540152811_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783540152811
Anzahl: 10 verfügbar