Verwandte Artikel zu Algorithmic Learning Theory: 15th International Conference,...

Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings: 3244 (Lecture Notes in Artificial Intelligence) - Softcover

 
9783540233565: Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings: 3244 (Lecture Notes in Artificial Intelligence)

Inhaltsangabe

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.

Reseña del editor

This book constitutes the refereed proceedings of the 15th International Conference on Algorithmic Learning Theory, ALT 2004, held in Padova, Italy in October 2004.

The 29 revised full papers presented together with 5 invited papers and 3 tutorial summaries were carefully reviewed and selected from 91 submissions. The papers are organized in topical sections on inductive inference, PAC learning and boosting, statistical supervised learning, online sequence learning, approximate optimization algorithms, logic based learning, and query and reinforcement learning.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
We are unable to ship to Canada...
Diesen Artikel anzeigen

EUR 6,00 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 2,26 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783662205204: Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings

Vorgestellte Ausgabe

ISBN 10:  3662205203 ISBN 13:  9783662205204
Verlag: Springer, 2014
Softcover

Suchergebnisse für Algorithmic Learning Theory: 15th International Conference,...

Beispielbild für diese ISBN

Ben David, Shai [Editor]; Case, John [Editor]; Maruoka, Akira [Editor];
Verlag: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Gebraucht Paperback

Anbieter: GuthrieBooks, Spring Branch, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. We are unable to ship to Canada at this time.Ex-library paperback in very nice condition with the usual markings and attachments. Except for library markings, interior clean and unmarked. Tight binding. Bestandsnummer des Verkäufers UTD1422823

Verkäufer kontaktieren

Gebraucht kaufen

EUR 44,93
Währung umrechnen
Versand: EUR 6,00
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Ben-David, Shai (EDT); Case, John (EDT); Maruoka, Akira (EDT)
Verlag: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 3195666-n

Verkäufer kontaktieren

Neu kaufen

EUR 54,10
Währung umrechnen
Versand: EUR 2,26
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Paperback

Anbieter: Grand Eagle Retail, Bensenville, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. This book constitutes the refereed proceedings of the 15th International Conference on Algorithmic Learning Theory, ALT 2004, held in Padova, Italy in October 2004. The 29 revised full papers presented together with 5 invited papers and 3 tutorial summaries were carefully reviewed and selected from 91 submissions. The papers are organized in topical sections on inductive inference, PAC learning and boosting, statistical supervised learning, online sequence learning, approximate optimization algorithms, logic based learning, and query and reinforcement learning. Algorithmic learning theory is mathematics about computer programs which learn from experience. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783540233565

Verkäufer kontaktieren

Neu kaufen

EUR 56,44
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Maruoka, Akira; David, Shai Ben; Case, John
Verlag: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020163608

Verkäufer kontaktieren

Neu kaufen

EUR 53,48
Währung umrechnen
Versand: EUR 3,42
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Maruoka, Akira; David, Shai Ben; Case, John
Verlag: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783540233565_new

Verkäufer kontaktieren

Neu kaufen

EUR 58,29
Währung umrechnen
Versand: EUR 13,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Ben-David, Shai (EDT); Case, John (EDT); Maruoka, Akira (EDT)
Verlag: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 3195666-n

Verkäufer kontaktieren

Neu kaufen

EUR 58,28
Währung umrechnen
Versand: EUR 17,28
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 528 pp. Englisch. Bestandsnummer des Verkäufers 9783540233565

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Ben-David, Shai|Case, John|Maruoka, Akira
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Kartoniert / Broschiert
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also con. Bestandsnummer des Verkäufers 4885875

Verkäufer kontaktieren

Neu kaufen

EUR 48,37
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 528 pp. Englisch. Bestandsnummer des Verkäufers 9783540233565

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. Bestandsnummer des Verkäufers 9783540233565

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: EUR 63,96
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 7 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen