1. 1 Introduction This book is written in two major parts. The ?rst part includes the int- ductory chapters consisting of Chapters 1 through 6. In part two, Chapters 7-26, we present the applications. This book continues our research into simulating fuzzy systems. We started with investigating simulating discrete event fuzzy systems ([7],[13],[14]). These systems can usually be described as queuing networks. Items (transactions) arrive at various points in the s- tem and go into a queue waiting for service. The service stations, preceded by a queue, are connected forming a network of queues and service, until the transaction ?nally exits the system. Examples considered included - chine shops, emergency rooms, project networks, bus routes, etc. Analysis of all of these systems depends on parameters like arrival rates and service rates. These parameters are usually estimated from historical data. These estimators are generally point estimators. The point estimators are put into the model to compute system descriptors like mean time an item spends in the system, or the expected number of transactions leaving the system per unit time. We argued that these point estimators contain uncertainty not shown in the calculations. Our estimators of these parameters become fuzzy numbers, constructed by placing a set of con?dence intervals one on top of another. Using fuzzy number parameters in the model makes it into a fuzzy system. The system descriptors we want (time in system, number leaving per unit time) will be fuzzy numbers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This monograph studies continuous fuzzy dynamical systems using crisp continuous simulation. A crisp continuous dynamical system is presented whose evolution depends on a system of ordinary differential equations (ODEs). The system of ODEs contains parameters many of which have uncertain values. Usually point estimators for these uncertain parameters are used, but the resulting system will not display any uncertainty associated with these estimators. Instead fuzzy number estimators are employed, constructed from expert opinion or from data, for the uncertain parameters. Fuzzy number estimators produce a system of fuzzy ODEs to solve whose solution will be fuzzy trajectories for the variables. The authors use crisp continuous simulation to estimate the trajectories of the support and core of these fuzzy numbers in a variety of twenty applications of fuzzy dynamical systems. The applications range from Bungee jumping to the AIDS epidemic to dynamical models in economics. This book is the companion text to "Simulating Fuzzy Systems" (Springer 2005) which investigated discrete fuzzy systems through crisp discrete simulation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-239813
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-91388
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHAK239813
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020164671
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540284550_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Bestandsnummer des Verkäufers ERICA77335402845596
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Studies continuous dynamical systems using crisp continuous simulationVariety of applications of fuzzy dynamical systems ranging from Bungee jumping to the AIDS epidemic to dynamical models in economicsCompanion text to Simula. Bestandsnummer des Verkäufers 4887038
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - 1. 1 Introduction This book is written in two major parts. The rst part includes the int- ductory chapters consisting of Chapters 1 through 6. In part two, Chapters 7-26, we present the applications. This book continues our research into simulating fuzzy systems. We started with investigating simulating discrete event fuzzy systems ([7],[13],[14]). These systems can usually be described as queuing networks. Items (transactions) arrive at various points in the s- tem and go into a queue waiting for service. The service stations, preceded by a queue, are connected forming a network of queues and service, until the transaction nally exits the system. Examples considered included - chine shops, emergency rooms, project networks, bus routes, etc. Analysis of all of these systems depends on parameters like arrival rates and service rates. These parameters are usually estimated from historical data. These estimators are generally point estimators. The point estimators are put into the model to compute system descriptors like mean time an item spends in the system, or the expected number of transactions leaving the system per unit time. We argued that these point estimators contain uncertainty not shown in the calculations. Our estimators of these parameters become fuzzy numbers, constructed by placing a set of con dence intervals one on top of another. Using fuzzy number parameters in the model makes it into a fuzzy system. The system descriptors we want (time in system, number leaving per unit time) will be fuzzy numbers. Bestandsnummer des Verkäufers 9783540284550
Anzahl: 2 verfügbar