Machine Learning and Data Mining in Pattern Recognition: Third International Conference, MLDM 2003, Leipzig, Germany, July 5-7, 2003, proceedings: 2734 (Lecture Notes in Artificial Intelligence) - Softcover

Perner, Petra; Rosenfeld, Azriel

 
9783540405047: Machine Learning and Data Mining in Pattern Recognition: Third International Conference, MLDM 2003, Leipzig, Germany, July 5-7, 2003, proceedings: 2734 (Lecture Notes in Artificial Intelligence)

Inhaltsangabe

TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.

Reseña del editor

This book constitutes the refereed proceedings of the Third International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2003, held in Leipzig, Germany, in July 2003.

The 33 revised full papers presented together with two invited papers were carefully reviewed and selected from 75 submissions. The papers are organized in topical sections on decision trees; clustering and its applications; support vector machines; case-based reasoning; classification, retrieval, and feature Learning; discovery of frequent or sequential patterns; Bayesian models and methods; association rule mining; and applications.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.