This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations.
This book is based on the author's Ph.D. thesis which was selected as the winning thesis of the 1999 ACM Doctoral Dissertation Competition. Dieter van Melkebeek did his Ph.D. work at the University of Chicago with Lance Fortnow as thesis advisor. This work studies some central issues in computational complexity: the relative power of time, space, and randomness in computing and verification. The author develops techniques for separating complexity classes by isolating structural differences between their complete problems. He presents several approaches based on such diverse concepts as density, redundancy, and frequency of occurrence.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 18,86 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Richard Booth's Bookshop, Hereford, Vereinigtes Königreich
PaperBack. Zustand: Good. No jacket. xv, 196pp. ill. 24 cm. Revision of thesis Ph. D.University of Chicago, 1999.Includes bibliographical references p. 183189 and indexes.Good Clean Copy.This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations. Bestandsnummer des Verkäufers 100073243
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree. Bestandsnummer des Verkäufers 4889290
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations. Bestandsnummer des Verkäufers 9783540414926
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations. 220 pp. Englisch. Bestandsnummer des Verkäufers 9783540414926
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 220 pp. Englisch. Bestandsnummer des Verkäufers 9783540414926
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540414926_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 1705095-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 1705095-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 220. Bestandsnummer des Verkäufers 183096019
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 220. Bestandsnummer des Verkäufers 263096025
Anzahl: 4 verfügbar