Verwandte Artikel zu Generalized Convexity and Generalized Monotonicity:...

Generalized Convexity and Generalized Monotonicity: "Proceedings Of The 6Th International Symposium On Generalized Convexity/Monotonicity, Samos, ... Notes in Economics and Mathematical Systems) - Softcover

 
9783540418061: Generalized Convexity and Generalized Monotonicity: "Proceedings Of The 6Th International Symposium On Generalized Convexity/Monotonicity, Samos, ... Notes in Economics and Mathematical Systems)

Inhaltsangabe

A famous saying (due toHerriot)definescultureas "what remainswhen everythingisforgotten ". One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone­ variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc­ tions,withapplicationsto partialdifferentialequations ,variationalinequal­ ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

A famous saying (due toHerriot)definescultureas "what remainswhen everythingisforgotten ". One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone­ variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc­ tions,withapplicationsto partialdifferentialequations ,variationalinequal­ ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.

Reseña del editor

Various generalizations of convex functions have been introduced in areas such as mathematical programming, economics, management science, engineering, stochastics and applied sciences, for example. Such functions preserve one or more properties of convex functions and give rise to models which are more adaptable to real-world situations than convex models. Similarly, generalizations of monotone maps have been studied recently. A growing literature of this interdisciplinary field has appeared, and a large number of international meetings are entirely devoted or include clusters on generalized convexity and generalized monotonicity. The present book contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in the field.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
410 Seiten. Laminiertes ehem. Bibliotheksexemplar...
Diesen Artikel anzeigen

EUR 4,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Generalized Convexity and Generalized Monotonicity:...

Foto des Verkäufers

Hadjisavvas, Nicolas, Juan Enrique Martinez-Legaz and Jean-Paul Penot:
Verlag: Berlin, Springer, 2001
ISBN 10: 3540418067 ISBN 13: 9783540418061
Gebraucht Softcover/Paperback

Anbieter: Antiquariat Thomas Nonnenmacher, Freiburg, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover/Paperback. Zustand: Gut. 410 Seiten. Laminiertes ehem. Bibliotheksexemplar mit Rückensignatur und Stempeln. Gut erhalten. 9783540418061 Sprache: Englisch Gewicht in Gramm: 1200. Bestandsnummer des Verkäufers 95297

Verkäufer kontaktieren

Gebraucht kaufen

EUR 80,00
Währung umrechnen
Versand: EUR 4,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Hadjisavvas, Nicolas|Martinez-Legaz, Juan E.|Penot, Jean-Paul
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Invited Papers.- Minimization of the Sum of Several Linear Fractional Functions.- Discrete Higher Order Convex Functions and their Applications.- Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problems.- Contributed Papers.- The Steiner Ratio of . Bestandsnummer des Verkäufers 4889454

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Nicolas Hadjisavvas
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A famous saying (due toHerriot)definescultureas 'what remainswhen everythingisforgotten '. One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions,withapplicationsto partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans. Bestandsnummer des Verkäufers 9783540418061

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Nicolas Hadjisavvas
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch. Bestandsnummer des Verkäufers 9783540418061

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Nicolas Hadjisavvas
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A famous saying (due toHerriot)definescultureas 'what remainswhen everythingisforgotten '. One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions,withapplicationsto partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans. 428 pp. Englisch. Bestandsnummer des Verkäufers 9783540418061

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Hadjisavvas, Nicolas
Verlag: Springer, 2001
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783540418061_new

Verkäufer kontaktieren

Neu kaufen

EUR 111,30
Währung umrechnen
Versand: EUR 5,72
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

International Symposium on Generalized Convexity/Monotonicity 1999 sa; Hadjisavvas, Nicolas; Martinez-Legaz, Juan-Enrique; Penot, Jean-Paul
Verlag: Springer, 2001
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 915850-n

Verkäufer kontaktieren

Neu kaufen

EUR 101,57
Währung umrechnen
Versand: EUR 17,03
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Hadjisavvas, Nicolas
Verlag: Springer, 2001
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Softcover

Anbieter: Best Price, Torrance, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783540418061

Verkäufer kontaktieren

Neu kaufen

EUR 96,02
Währung umrechnen
Versand: EUR 25,54
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

. Ed(s): Hadjisavvas, Nicolas; Martinez-Legaz, Juan E.; Penot, Jean-Paul
ISBN 10: 3540418067 ISBN 13: 9783540418061
Neu Softcover

Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This volume contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in this interdisciplinary field. Editor(s): Hadjisavvas, Nicolas; Martinez-Legaz, Juan E.; Penot, Jean-Paul. Series: Lecture Notes in Economics and Mathematical Systems. Num Pages: 419 pages, 1 black & white illustrations, 1 colour illustrations, biography. BIC Classification: PBK; PBU. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 22. Weight in Grams: 597. . 2001. Paperback. . . . . Bestandsnummer des Verkäufers V9783540418061

Verkäufer kontaktieren

Neu kaufen

EUR 134,43
Währung umrechnen
Versand: EUR 2,00
Von Irland nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

International Symposium on Generalized Convexity/Monotonicity 1999 sa; Hadjisavvas, Nicolas; Martinez-Legaz, Juan-Enrique; Penot, Jean-Paul
Verlag: Springer, 2001
ISBN 10: 3540418067 ISBN 13: 9783540418061
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 915850

Verkäufer kontaktieren

Gebraucht kaufen

EUR 120,97
Währung umrechnen
Versand: EUR 17,03
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Es gibt 7 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen