An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the challenge to the cell would be to rescue specific sequences from these structures. The exten sive packaging of inactive DNA was considered the primary difference between eukaryotic and prokaryotic genomes and except for that point both would be similarly regulated by cis-acting sequences and trans acting factors. Our view of eukaryotic chromosomes has evolved dra matically over the last decade. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Indeed chromatin is so fluid that even maintaining gene quiescence is an active process and is tightly regulated. Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobi lize nucleosomes or stabilize nucleosomes. Awide variety of such com plexes have now been described. Some are abundant and may play glo bal roles in chromosome fluidity and function. Others are more rare and specialized for specific functions at discreet loci. Moreover, several complexes share biochemical activities and genetic studies suggest overlapping functions in vivo. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel cell biological or biochemical approaches.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobilize nucleosomes or stabilize nucleosomes. A wide variety of such complexes have now been described. Some are abundant and may play global roles, others are more rare and specialized for functions at discreet loci. Several complexes share biochemical activities and genetic studies suggest overlapping functions. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel biochemical approaches. This volume of Current Topics in Microbiology and Immunology reviews a wide variety of protein complexes that modify chromatin.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Good. 296 pp., Hardcover, ex library, text clean & binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB935881
Anzahl: 1 verfügbar
Anbieter: CSG Onlinebuch GMBH, Darmstadt, Deutschland
Gebunden. Zustand: Gut. Gebraucht - Gut Zustand: Gut, Mängelexemplar, XII, 296 p. 38 illus., 6 in color. About this book: Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobilize nucleosomes or stabilize nucleosomes. A wide variety of such complexes have now been described. Some are abundant and may play global roles, others are more rare and specialized for functions at discreet loci. Several complexes share biochemical activities and genetic studies suggest overlapping functions. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel biochemical approaches. This volume of Current Topics in Microbiology and Immunology reviews a wide variety of protein complexes that modify chromatin. Written for researchers and scientists in the field of human genetics. Bestandsnummer des Verkäufers 14850
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540442080_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 1630669-n
Anzahl: 15 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This book provides timely reviews of several protein complexes that regulate gene expression and chromatin dynamics. Examples of such complexes include: nucleosome assembly complexes, ATP-dependent chromatin remodeling complexes, histone acetyltransferase complexes, histone deacetylase complexes, heterochromatin complexes, SMC complexes and transcription elongation complexes. These chapters will bring experts in the field up to date on several aspects of chromosome biology and will provide an exiting introduction to the field for new chromatin researchers. An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783540442080
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the challenge to the cell would be to rescue specific sequences from these structures. The exten sive packaging of inactive DNA was considered the primary difference between eukaryotic and prokaryotic genomes and except for that point both would be similarly regulated by cis-acting sequences and trans acting factors. Our view of eukaryotic chromosomes has evolved dra matically over the last decade. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Indeed chromatin is so fluid that even maintaining gene quiescence is an active process and is tightly regulated. Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobi lize nucleosomes or stabilize nucleosomes. Awide variety of such com plexes have now been described. Some are abundant and may play glo bal roles in chromosome fluidity and function. Others are more rare and specialized for specific functions at discreet loci. Moreover, several complexes share biochemical activities and genetic studies suggest overlapping functions in vivo. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel cell biological or biochemical approaches. 316 pp. Englisch. Bestandsnummer des Verkäufers 9783540442080
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the. Bestandsnummer des Verkäufers 4890933
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783540442080
Anzahl: Mehr als 20 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Protein Complexes that Modify Chromatin | Jerry L. Workman | Buch | xi | Englisch | 2003 | Springer-Verlag GmbH | EAN 9783540442080 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 102626117
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -An early view of eukaryotic chromosomes was that of static structures, which stored DNA not in use within a given cell type. It was thought that packaging of DNA into higher levels of chromatin structure would suffice to repress gene expression and that the challenge to the cell would be to rescue specific sequences from these structures. The exten sive packaging of inactive DNA was considered the primary difference between eukaryotic and prokaryotic genomes and except for that point both would be similarly regulated by cis-acting sequences and trans acting factors. Our view of eukaryotic chromosomes has evolved dra matically over the last decade. The picture of chromosomes that is emerging is that of dynamic breathing organelles actively regulating the flow of genetic information from the genome. Indeed chromatin is so fluid that even maintaining gene quiescence is an active process and is tightly regulated. Chromatin dynamics is a consequence of protein complexes that modify histones, remove histone modifications, mobi lize nucleosomes or stabilize nucleosomes. Awide variety of such com plexes have now been described. Some are abundant and may play glo bal roles in chromosome fluidity and function. Others are more rare and specialized for specific functions at discreet loci. Moreover, several complexes share biochemical activities and genetic studies suggest overlapping functions in vivo. Many components of these complexes were first revealed in genetic screens, while others were discovered by novel cell biological or biochemical approaches.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 316 pp. Englisch. Bestandsnummer des Verkäufers 9783540442080
Anzahl: 2 verfügbar