In this monograph the author presents a thorough computational geometry approach to handling theoretical and practical problems arising from numerically controlled pocket machining. The approach unifies two scientific disciplines: computational geometry and mechanical engineering. Topics of practical importance that are dealt with include the selection of tool sizes, the determination of tool paths, and the optimization of tool paths. Full details of the algorithms are given from a practical point of view, including information on implementation issues. This practice-minded approach is embedded in a rigorous theoretical framework enabling concise statement of definitions and proof of the correctness and efficiency of the algorithms. In particular, the construction of Voronoi diagrams and their use for offset calculations are investigated in great detail. Based on Voronoi diagrams, a graph-like structure is introduced that serves as a high-level abstraction of the pocket geometry and provides the basis for algorithmically performing shape interrogation and path planning tasks. Finally, the efficiency and robustness of the approach is illustrated with figures showing pocketing examples that have been processed by the author's own implementation.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this monograph the author presents a thorough computational geometry approach to handling theoretical and practical problems arising from numerically controlled pocket machining. The approach unifies two scientific disciplines: computational geometry and mechanical engineering. Topics of practical importance that are dealt with include the selection of tool sizes, the determination of tool paths, and the optimization of tool paths. Full details of the algorithms are given from a practical point of view, including information on implementation issues. This practice-minded approach is embedded in a rigorous theoretical framework enabling concise statement of definitions and proof of the correctness and efficiency of the algorithms. In particular, the construction of Voronoi diagrams and their use for offset calculations are investigated in great detail. Based on Voronoi diagrams, a graph-like structure is introduced that serves as a high-level abstraction of the pocket geometry and provides the basis for algorithmically performing shape interrogation and path planning tasks. Finally, the efficiency and robustness of the approach is illustrated with figures showing pocketing examples that have been processed by the author's own implementation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 44,00 für den Versand von Niederlande nach USA
Versandziele, Kosten & DauerEUR 2,28 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 5906374-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020169895
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. In this monograph the author presents a thorough computational geometry approach to handling theoretical and practical problems arising from numerically controlled pocket machining. The approach unifies two scientific disciplines: computational geometry and mechanical engineering. Topics of practical importance that are dealt with include the selection of tool sizes, the determination of tool paths, and the optimization of tool paths. Full details of the algorithms are given from a practical point of view, including information on implementation issues. This practice-minded approach is embedded in a rigorous theoretical framework enabling concise statement of definitions and proof of the correctness and efficiency of the algorithms. In particular, the construction of Voronoi diagrams and their use for offset calculations are investigated in great detail. Based on Voronoi diagrams, a graph-like structure is introduced that serves as a high-level abstraction of the pocket geometry and provides the basis for algorithmically performing shape interrogation and path planning tasks. Finally, the efficiency and robustness of the approach is illustrated with figures showing pocketing examples that have been processed by the author's own implementation. This monograph presents a geometrical investigation of practical and theoretical problems arising from NC pocket machining. Practical topics include selection of tool sizes and determination of optimal tool paths. A theoretical framework based on Voronoi diagrams is given. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783540541035
Anzahl: 1 verfügbar
Anbieter: Emile Kerssemakers ILAB, Heerlen, Niederlande
23 cm. original paperback. 178 pp. bibliography. "Lecture Notes in Computer Science". -(libr labels, library stamp, otherwise good). 335g. Bestandsnummer des Verkäufers 71851
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783540541035
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540541035_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Antikvariat Valentinska, Praha, Tschechien
Paperback, 12+180 pp., 8° (15.5 x 23.5 cm), cover very slightly worn, condition: fine Book Language/s: English. Bestandsnummer des Verkäufers A37437
Anzahl: 1 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783540541035
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 5906374-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this monograph the author presents a thorough computational geometry approach to handling theoretical and practical problems arising from numerically controlled pocket machining. The approach unifies two scientific disciplines: computational geometry and mechanical engineering. Topics of practical importance that are dealt with include the selection of tool sizes, the determination of tool paths, and the optimization of tool paths. Full details of the algorithms are given from a practical point of view, including information on implementation issues. This practice-minded approach is embedded in a rigorous theoretical framework enabling concise statement of definitions and proof of the correctness and efficiency of the algorithms. In particular, the construction of Voronoi diagrams and their use for offset calculations are investigated in great detail. Based on Voronoi diagrams, a graph-like structure is introduced that serves as a high-level abstraction of the pocket geometry and provides the basis for algorithmically performing shape interrogation and path planning tasks. Finally, the efficiency and robustness of the approach is illustrated with figures showing pocketing examples that have been processed by the author's own implementation. 196 pp. Englisch. Bestandsnummer des Verkäufers 9783540541035
Anzahl: 2 verfügbar