The subject of blow-up in a finite time, or at least very rapid growth, of a solution to a partial differential equation has been an area of intense re search activity in mathematics. Some ofthe early techniques and results were discussed in the monograph by Payne (1975) and in my earlier monograph, Straughan (1982). Relatively recent accounts of blow-up work in partial dif ferential equations may be found in the review by Levine (1990) and in the book by Samarskii et al. (1994). It is becoming increasingly clear that very rapid instabilities and, indeed, finite time blow-up are being witnessed also in problems in applied mathematics and mechanics. Also in vogue in the mathematical literature are studies of blow-up in systems of partial differen tial equations, partial differential equations with non-linear convection terms, and systems of partial differential equations which contain convection terms. Such equations are often derived from models of mundane situations in real life. This book is an account of these topics in a selection of areas of applied mathematics which either I have worked in or I find particularly interesting and deem relevant to be included in such an exposition. I believe the results given in Chap. 2 and Sects. 4. 2. 3 and 4. 2. 4 are new. This research was partly supported by a Max Planck Forschungspreis from the Alexander von Humboldt Foundation and the Max Planck Institute.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
This book deals with blow-up, or at least very rapid growth, of a solution to a system of partial differential equations that arise in practical physics situations. It begins with a relatively simple account of blow-up in systems of interaction-diffusion equations.
Then the book concentrates on mechanics applications. In particular it deals with the Euler equations, Navier--Stokes equations, models for glacier physics, Korteweg--de-Vries equations, and ferro-hydrodynamics. Blow-up is treated in Volterra equations, too, stressing how these equations arise in mechanics, e.g. in combustion theory. The novel topic of chemotaxis in mathematical biology is also presented. There is a chapter on change of type, from hyperbolic to elliptic, addressing three new and important applications: instability in soils, instability in sea ice dynamics, and also instability in pressure-dependent viscosity flow. Finally, the book includes an exposition of exciting work, very recent and on-going, dealing with rapid energy growth in parallel shear flows.
The book addresses graduate students as well as researchers in mechanics and applied mathematics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Armadillo Books, Chapel Hill, NC, USA
Hardcover. Zustand: Near Fine. 1st Edition. Near mint condition! A crisp, bright, and tight copy -- essentially "as new." No markings or defects of any kind. Ships from NC. All books are sealed in plastic, packed securely, and shipped promptly. (C-8.). Bestandsnummer des Verkäufers 720180097
Anbieter: Heartwood Books, A.B.A.A., Charlottesville, VA, USA
Hardcover. Zustand: Very Good. No Jacket. Very Good clean solid hardback copy with a minor bump to one corner. No dust jacket. #. Bestandsnummer des Verkäufers 6842
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-241861
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-85541
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783540635895
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540635895_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book deals with explosive instabilities in mechanics, deriving a solution to a system of PDEs that arise in practical situations. It begins with a relatively simple account of blow-up in systems of interaction-diffusion equations. Among the topics presented are: classical fluid equations, catastrophic behavior in nonlinear fluid theories, blow-up in Volterra equations, and rapid energy growth in parallel flows. 212 pp. Englisch. Bestandsnummer des Verkäufers 9783540635895
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 196 pages. 9.75x6.50x0.50 inches. In Stock. Bestandsnummer des Verkäufers x-3540635890
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is the first book that deals with the blow-up-problem for solutions of PDEs in a wide range of applications to mechanics, biology etc.This book deals with explosive instabilities in mechanics, deriving a solution to a system of PDEs that arise in p. Bestandsnummer des Verkäufers 448942976
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The subject of blow-up in a finite time, or at least very rapid growth, of a solution to a partial differential equation has been an area of intense re search activity in mathematics. Some ofthe early techniques and results were discussed in the monograph by Payne (1975) and in my earlier monograph, Straughan (1982). Relatively recent accounts of blow-up work in partial dif ferential equations may be found in the review by Levine (1990) and in the book by Samarskii et al. (1994). It is becoming increasingly clear that very rapid instabilities and, indeed, finite time blow-up are being witnessed also in problems in applied mathematics and mechanics. Also in vogue in the mathematical literature are studies of blow-up in systems of partial differen tial equations, partial differential equations with non-linear convection terms, and systems of partial differential equations which contain convection terms. Such equations are often derived from models of mundane situations in real life. This book is an account of these topics in a selection of areas of applied mathematics which either I have worked in or I find particularly interesting and deem relevant to be included in such an exposition. I believe the results given in Chap. 2 and Sects. 4. 2. 3 and 4. 2. 4 are new. This research was partly supported by a Max Planck Forschungspreis from the Alexander von Humboldt Foundation and the Max Planck Institute.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 212 pp. Englisch. Bestandsnummer des Verkäufers 9783540635895
Anzahl: 2 verfügbar