Springer, Berlin, 1998. XIV, 460 pages, paperback, (former library book) -Perspectives in Mathematical Logic-
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items.
From the reviews: ..."This work is a very important contribution to the logical literature. It gives a survey of an incredible number of results and methods in the foundations of arithmetic, presented in a clear and systematic way. It will certainly be highly appreciated by specialists working in the field." Mathematical Reviews, USA 1994 ..."It is really a highly interesting book - a survey of a large amount of results presented in a systematic and clear way. It will serve as a source of information for those who want to learn meta-mathematics of first-order arithmetic as well as a reference book for people working in this field." Zentralblatt für Mathematik und Ihre Grenzgebiete, 781.1994.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported Softcover reprint of the original 1st ed. 1993. Bestandsnummer des Verkäufers 354063648X-11-1
Anzahl: 1 verfügbar
Anbieter: HPB-Red, Dallas, TX, USA
paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_302142506
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783540636489
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783540636489_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items. 476 pp. Englisch. Bestandsnummer des Verkäufers 9783540636489
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. * Coverage of incompleteness of interest to philosophers concerned with its implications * Coverage of computational complexity and its connections to provability will interest computer scientistsCoverage of incompleteness of interest to philosophers. Bestandsnummer des Verkäufers 4896444
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items. Bestandsnummer des Verkäufers 9783540636489
Anzahl: 1 verfügbar
Anbieter: BennettBooksLtd, North Las Vegas, NV, USA
paperback. Zustand: New. In shrink wrap. Looks like an interesting title! Bestandsnummer des Verkäufers Q-354063648X
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 476. Bestandsnummer des Verkäufers 2698275747
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 476 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 95170172
Anzahl: 4 verfügbar