0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a ?nite-dimensional closed system of ?ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy ?lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ?ltering equations. However, the optimal nonlinear ?nite-dimensional ?lter can be - tained in some other cases, if, for example, the state vector can take only a ?nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis?es the Riccati equation df /dx + f = x (see [15]). The complete classi?cation of the "general situation" cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear ?nite-dimensional ?lter exists, is given in [95].
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
From the reviews:
"The book under review provides ways to practically use the filtering model ... . This book should be of interest to those for whom filtering and control go beyond the mathematics and who would like to have a sense of the gap that exists in that area between theory and practice. It is also a rich source of specific examples." (A. F. Gualtierotti, Mathematical Reviews, Issue 2009 k)
0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a ?nite-dimensional closed system of ?ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy ?lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ?ltering equations. However, the optimal nonlinear ?nite-dimensional ?lter can be - tained in some other cases, if, for example, the state vector can take only a ?nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis?es the Riccati equation df /dx + f = x (see [15]). The complete classi?cation of the "general situation" cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear ?nite-dimensional ?lter exists, is given in [95].
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 236. Bestandsnummer des Verkäufers 18396930
Anzahl: 4 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-269315
Anzahl: Mehr als 20 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-73851
Anzahl: 5 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 236. Bestandsnummer des Verkäufers 26396936
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 236 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 7450967
Anzahl: 4 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-325613
Anzahl: 2 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut - Neubindung | Seiten: 236 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 4562937/12
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the state of the art in the area of Optimal Filtering and Control for Polynomial and Time-Delay Systems0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused. Bestandsnummer des Verkäufers 4899038
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -0. 1 Introduction Although the general optimal solution of the ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a nite-dimensional closed system of ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ltering equations. However, the optimal nonlinear nite-dimensional lter can be - tained in some other cases, if, for example, the state vector can take only a nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis es the Riccati equation df /dx + f = x (see [15]). The complete classi cation of the 'general situation' cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear nite-dimensional lter exists, is given in [95]. 236 pp. Englisch. Bestandsnummer des Verkäufers 9783540708025
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 0. 1 Introduction Although the general optimal solution of the ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a nite-dimensional closed system of ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ltering equations. However, the optimal nonlinear nite-dimensional lter can be - tained in some other cases, if, for example, the state vector can take only a nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis es the Riccati equation df /dx + f = x (see [15]). The complete classi cation of the 'general situation' cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear nite-dimensional lter exists, is given in [95]. Bestandsnummer des Verkäufers 9783540708025
Anzahl: 1 verfügbar