Combinatorial auctions are auctions in which each bid can be placed on a set of items, as opposed to standard auctions, in which each bid is placed on a single item. The winner determination problem for combinatorial auctions is known to be NP-complete. One of the approaches to cope with the hardness of the problem is to identify tractable classes of combinatorial auctions by means of hypertree decompositions. The winner determination problem is tractable on the class of instances with corresponding dual hypergraphs having hypertree width bounded by a fixed natural number. This book describes an optimal algorithm, called ComputeSetPackingK, for solving the winner determination problem based on these ideas. The algorithm was implemented, and experimental results are also presented.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Combinatorial auctions are auctions in which each bid can be placed on a set of items, as opposed to standard auctions, in which each bid is placed on a single item. The winner determination problem for combinatorial auctions is known to be NP-complete. One of the approaches to cope with the hardness of the problem is to identify tractable classes of combinatorial auctions by means of hypertree decompositions. The winner determination problem is tractable on the class of instances with corresponding dual hypergraphs having hypertree width bounded by a fixed natural number. This book describes an optimal algorithm, called ComputeSetPackingK, for solving the winner determination problem based on these ideas. The algorithm was implemented, and experimental results are also presented.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639022315_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639022315
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639022315
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Combinatorial auctions are auctions in which each bidcan be placed on a set of items, as opposed tostandard auctions, in which each bid is placed on asingle item. The winner determination problem forcombinatorial auctions is known to be NP-complete.One of t. Bestandsnummer des Verkäufers 4950163
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639022315
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639022315
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Combinatorial auctions are auctions in which each bidcan be placed on a set of items, as opposed tostandard auctions, in which each bid is placed on asingle item. The winner determination problem forcombinatorial auctions is known to be NP-complete.One of the approaches to cope with the hardness ofthe problem is to identify tractable classes ofcombinatorial auctions by means of hypertreedecompositions. The winner determination problem istractable on the class of instances withcorresponding dual hypergraphs having hypertree widthbounded by a fixed natural number. This bookdescribes an optimal algorithm, calledComputeSetPackingK, for solving the winnerdetermination problem based on these ideas. Thealgorithm was implemented, and experimental resultsare also presented. Bestandsnummer des Verkäufers 9783639022315
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020185214
Anzahl: Mehr als 20 verfügbar