Evaluation of advanced Air Traffic Management concepts is a challenging task due to the limitations in the existing scenario generation methodologies. Their rigorous evaluation on safety metrics, in a variety of complex scenarios, can provide an insight into their performance, which can help improve upon them while developing new ones.In this work, I propose an air traffic simulation system, with a novel representation of airspace, which can prototype advanced ATM concepts. I then propose a novel evolutionary computation methodology to algorithmically generate conflict scenarios of increasing complexity in order to evaluate conflict detection algorithms.I illustrate the methodology by quantitative evaluation of three conflict detection algorithms on safety metrics. I then propose the use of data mining techniques for the discovery of interesting relationships, that may exist implicitly, in the algorithm’s performance data.This relationships are formed as a predictive model for algorithm’s vulnerability which can then be included in an ensemble that can minimize the overall vulnerability of the system.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Evaluation of advanced Air Traffic Management concepts is a challenging task due to the limitations in the existing scenario generation methodologies. Their rigorous evaluation on safety metrics, in a variety of complex scenarios, can provide an insight into their performance, which can help improve upon them while developing new ones. In this work, I propose an air traffic simulation system, with a novel representation of airspace, which can prototype advanced ATM concepts. I then propose a novel evolutionary computation methodology to algorithmically generate conflict scenarios of increasing complexity in order to evaluate conflict detection algorithms. I illustrate the methodology by quantitative evaluation of three conflict detection algorithms on safety metrics. I then propose the use of data mining techniques for the discovery of interesting relationships, that may exist implicitly, in the algorithm's performance data. This relationships are formed as a predictive model for algorithm's vulnerability which can then be included in an ensemble that can minimize the overall vulnerability of the system.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 5129068/1
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 5129068/2
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Alam SameerDr. Sameer Alam is a Research Fellow at the University of New nSouth Wales, Australian Defence Force Academy, Australia. He nholds M.Tech. and Ph.D. in Computer Science. He has published nover 10 research papers. He is a r. Bestandsnummer des Verkäufers 4950186
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Evaluation of advanced Air Traffic Management concepts is a challenging task due to the limitations in the existing scenario generation methodologies. Their rigorous evaluation on safety metrics, in a variety of complex scenarios, can provide an insight into their performance, which can help improve upon them while developing new ones.In this work, I propose an air traffic simulation system, with a novel representation of airspace, which can prototype advanced ATM concepts. I then propose a novel evolutionary computation methodology to algorithmically generate conflict scenarios of increasing complexity in order to evaluate conflict detection algorithms.I illustrate the methodology by quantitative evaluation of three conflict detection algorithms on safety metrics. I then propose the use of data mining techniques for the discovery of interesting relationships, that may exist implicitly, in the algorithm''s performance data.This relationships are formed as a predictive model for algorithm''s vulnerability which can then be included in an ensemble that can minimize the overall vulnerability of the system. Bestandsnummer des Verkäufers 9783639022551
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639022551
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639022551_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639022551
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639022551
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639022551
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783639022551
Anzahl: 1 verfügbar