We explore various optimization problems which appear in computer vision and image processing. By exploiting the geometric structure of the underlying search spaces, we develop more efficient and robust ways to find optimal solutions. We present the Nelder-Mead algorithms on Lie groups and describe its application to medical image registration. A widely used approach to image registration involves finding the transformation that maximizes the mutual information between two images, with the transformation restricted to be either rigid-body (i.e., belonging to SE(3)) or volume-preserving (i.e., belonging to SL(3)). We present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the transformation groups SL(3), SE(3), and its various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying transformation groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometrics algorithm.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
We explore various optimization problems which appear in computer vision and image processing. By exploiting the geometric structure of the underlying search spaces, we develop more efficient and robust ways to find optimal solutions. We present the Nelder-Mead algorithms on Lie groups and describe its application to medical image registration. A widely used approach to image registration involves finding the transformation that maximizes the mutual information between two images, with the transformation restricted to be either rigid-body (i.e., belonging to SE(3)) or volume-preserving (i.e., belonging to SL(3)). We present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the transformation groups SL(3), SE(3), and its various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying transformation groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometrics algorithm.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 0,54 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639032260
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639032260_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639032260
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. We explore various optimization problems whichappear in computer vision and image processing. By exploiting the geometric structure of the underlying search spaces, we develop more efficient and robust ways to find optimal solutions.We present the Nelder-Me. Bestandsnummer des Verkäufers 4951089
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639032260
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639032260
Anzahl: 10 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020185434
Anzahl: Mehr als 20 verfügbar