Ontologies are formal, declarative knowledge representation models, forming a semantic foundation for many domains. As the Semantic Web gains attention as the next generation of the Web, ontologies' importance increases accordingly. Different ontologies are heterogeneous, which can lead to misunderstandings, so there is a need for them to be related. The suggested approaches can be categorized as either rule-based or learning-based. The former works on ontology schemas, and the latter considers both schemas and instances. This book makes 6 assumptions to bound the matching problem, then presents 3 systems towards the mutual reconciliation of concepts from different ontologies: (1) the Puzzle system belongs to the rule-based approach; (2) the SOCCER (Similar Ontology Concept ClustERing) system is mostly a learning-based solution, integrated with some rule-based techniques; and (3) the Compatibility Vector system, although not an ontology-matching algorithm by itself, instead is a means of measuring and maintaining ontology compatibility, which helps in the mutual understanding of ontologies and determines the compatibility of services (or agents) associated with these ontologies.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ontologies are formal, declarative knowledge representation models, forming a semantic foundation for many domains. As the Semantic Web gains attention as the next generation of the Web, ontologies' importance increases accordingly. Different ontologies are heterogeneous, which can lead to misunderstandings, so there is a need for them to be related. The suggested approaches can be categorized as either rule-based or learning-based. The former works on ontology schemas, and the latter considers both schemas and instances. This book makes 6 assumptions to bound the matching problem, then presents 3 systems towards the mutual reconciliation of concepts from different ontologies: (1) the Puzzle system belongs to the rule-based approach; (2) the SOCCER (Similar Ontology Concept ClustERing) system is mostly a learning-based solution, integrated with some rule-based techniques; and (3) the Compatibility Vector system, although not an ontology-matching algorithm by itself, instead is a means of measuring and maintaining ontology compatibility, which helps in the mutual understanding of ontologies and determines the compatibility of services (or agents) associated with these ontologies.
Dr. Jingshan Huang is an Assistant Professor in Computer Science at University of South Alabama. He has conducted many research funded by DoD and NIH, and his research concentrates in machine intelligence and semantic integration. He is the author of over 20 technical papers and has served as a PC member in many international conferences/journals.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,84 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ontologies are formal, declarative knowledgerepresentation models, forming a semantic foundationfor many domains. As the Semantic Web gains attentionas the next generation of the Web, ontologies importance increases accordingly. Diff. Bestandsnummer des Verkäufers 4958831
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Ontologies are formal, declarative knowledgerepresentation models, forming a semantic foundationfor many domains. As the Semantic Web gains attentionas the next generation of the Web, ontologies'importance increases accordingly. Differentontologies are heterogeneous, which can lead tomisunderstandings, so there is a need for them to berelated. The suggested approaches can be categorizedas either rule-based or learning-based. The formerworks on ontology schemas, and the latter considersboth schemas and instances.This book makes 6 assumptions to bound the matchingproblem, then presents 3 systems towards the mutualreconciliation of concepts from different ontologies:(1) the Puzzle system belongs to the rule-basedapproach; (2) the SOCCER (Similar Ontology ConceptClustERing) system is mostly a learning-basedsolution, integrated with some rule-based techniques;and (3) the Compatibility Vector system, although notan ontology-matching algorithm by itself, instead isa means of measuring and maintaining ontologycompatibility, which helps in the mutualunderstanding of ontologies and determines thecompatibility of services (or agents) associated withthese ontologies. Bestandsnummer des Verkäufers 9783639115567
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639115567_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639115567
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639115567
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639115567
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639115567
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75836391155626
Anzahl: 1 verfügbar