This book describes new techniques that can be used in a sign language recognition (SLR) system, and more generally in human gesture systems. Any SLR system consists of three main components: Skin detector, Tracker, and Recognizer. The skin detector is responsible for segmenting skin objects like the face and hands from video frames. The tracker keeps track of the hand location (specifically the bounding box) and detects any occlusions that might happen between any skin objects. Finally, the recognizer tries to classify the performed sign into one of the sign classes in our vocabulary using the set of features and information provided by the tracker. Instead of dealing with the whole sign for recognition, the sign can be broken down into elementary subunits, which are far less in number than the total number of signs in the vocabulary. We propose a novel algorithm to model and segment these subunits, then try to learn the informative combinations of subunits/features using a boosting framework. In brief, This book takes you into a journey and describes all the necessary steps that are needed to recognize the meaning of a performed signs in a video.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book describes new techniques that can be used in a sign language recognition (SLR) system, and more generally in human gesture systems. Any SLR system consists of three main components: Skin detector, Tracker, and Recognizer. The skin detector is responsible for segmenting skin objects like the face and hands from video frames. The tracker keeps track of the hand location (specifically the bounding box) and detects any occlusions that might happen between any skin objects. Finally, the recognizer tries to classify the performed sign into one of the sign classes in our vocabulary using the set of features and information provided by the tracker. Instead of dealing with the whole sign for recognition, the sign can be broken down into elementary subunits, which are far less in number than the total number of signs in the vocabulary. We propose a novel algorithm to model and segment these subunits, then try to learn the informative combinations of subunits/features using a boosting framework. In brief, This book takes you into a journey and describes all the necessary steps that are needed to recognize the meaning of a performed signs in a video.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020187773
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639126587
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639126587
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639126587
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639126587_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639126587
Anzahl: 10 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Awad GeorgeDr. George Awad received his B.sc. in Computer Engineering from the AASTMT, Egypt in 2000 and Msc. in 2004. He worked as a lecturer assistant till 2004. He received his Ph.D. from DCU, Ireland in 2007. Currently, he wor. Bestandsnummer des Verkäufers 4959848
Anzahl: Mehr als 20 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. A Framework for Sign Language Recognition | Applying Support Vector Machines and Active Learning for Skin Segmentation and Boosted Temporal Sub-units for Recognition | George Awad | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2010 | VDM Verlag Dr. Müller | EAN 9783639126587 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 101166764
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book describes new techniques that can be used in a sign language recognition (SLR) system, and more generally in human gesture systems. Any SLR system consists of three main components: Skin detector, Tracker, and Recognizer. The skin detector is responsible for segmenting skin objects like the face and hands from video frames. The tracker keeps track of the hand location (specifically the bounding box) and detects any occlusions that might happen between any skin objects. Finally, the recognizer tries to classify the performed sign into one of the sign classes in our vocabulary using the set of features and information provided by the tracker. Instead of dealing with the whole sign for recognition, the sign can be broken down into elementary subunits, which are far less in number than the total number of signs in the vocabulary. We propose a novel algorithm to model and segment these subunits, then try to learn the informative combinations of subunits/features using a boosting framework. In brief, This book takes you into a journey and describes all the necessary steps that are needed to recognize the meaning of a performed signs in a video. Bestandsnummer des Verkäufers 9783639126587
Anzahl: 2 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79036391265806
Anzahl: 1 verfügbar