The basic philosophy of Functional Data Analysis (FDA) is to think of the observed data functions as elements of a possibly infinite-dimensional function space. Most of the current research topics on FDA focus on advancing theoretical tools and extending existing multivariate techniques to accommodate the infinite-dimensional nature of data. This monograph reports contributions on both fronts, where a unifying inverse regression theory for both the multivariate setting and functional data from a Reproducing Kernel Hilbert Space (RKHS) prospective is developed. We proposed a stochastic multiple-index model, two RKHS-related inverse regression procedures, a ``slicing'' approach and a kernel approach, as well as an asymptotic theory were introduced to the statistical framework. Some general computational issues of FDA were discussed, Some general computational issues of FDA were discussed, which led to smoothed versions of the stochastic inverse regression methods.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The basic philosophy of Functional Data Analysis (FDA) is to think of the observed data functions as elements of a possibly infinite-dimensional function space. Most of the current research topics on FDA focus on advancing theoretical tools and extending existing multivariate techniques to accommodate the infinite-dimensional nature of data. This monograph reports contributions on both fronts, where a unifying inverse regression theory for both the multivariate setting and functional data from a Reproducing Kernel Hilbert Space (RKHS) prospective is developed. We proposed a stochastic multiple-index model, two RKHS-related inverse regression procedures, a ``slicing'' approach and a kernel approach, as well as an asymptotic theory were introduced to the statistical framework. Some general computational issues of FDA were discussed, Some general computational issues of FDA were discussed, which led to smoothed versions of the stochastic inverse regression methods.
Haobo Ren received his B.S. and M.S. in statistics from Peking University, China, and Ph.D in statistics from Texas A&M University, USA. He was working in the Bell Labs as a member of technical staff, then moved to pharmaceutical industry as a biostatistician. He currently works in Regeneron Pharmaceuticals Incorporation, USA.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ren HaoboHaobo Ren received his B.S. and M.S. in statistics from Peking nUniversity, China, and Ph.D in statistics from Texas A&M nUniversity, USA. He was working in the Bell Labs as a member of ntechnical staff, then moved to pharma. Bestandsnummer des Verkäufers 4964477
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The basic philosophy of Functional Data Analysis (FDA) is to think of the observed data functions as elements of a possibly infinite-dimensional function space. Most of the current research topics on FDA focus on advancing theoretical tools and extending existing multivariate techniques to accommodate the infinite-dimensional nature of data. This monograph reports contributions on both fronts, where a unifying inverse regression theory for both themultivariate setting and functional data from a Reproducing Kernel Hilbert Space (RKHS) prospective is developed. We proposed a stochastic multiple-index model, two RKHS-related inverse regression procedures, a ``slicing'' approach and a kernel approach, as well as an asymptotic theory were introduced to the statistical framework. Some general computational issues of FDA were discussed, Somegeneral computational issues of FDA were discussed, which led to smoothed versions of the stochastic inverse regression methods. Bestandsnummer des Verkäufers 9783639177923
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639177923_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639177923
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639177923
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639177923
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639177923
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 112. Bestandsnummer des Verkäufers 18128748296
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 112. Bestandsnummer des Verkäufers 26128748290
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 112 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Bestandsnummer des Verkäufers 131806429
Anzahl: 4 verfügbar