An advanced artificial intelligence based algorithm for detecting and classifying faults on the power system transmission line is introduced. The approach utilizes self-organized, Adaptive Resonance Theory (ART) neural network, combined with fuzzy decision rule for interpretation of neural network outputs. Training of the neural network is based on the combined use of unsupervised and supervised learning methods. During training, a set of input events is transformed into a set of prototypes of typical input events. During application, real events are classified based on the interpretation of their matching to the prototypes through fuzzy decision rule. This study introduces several enhancements to the original version of the ART algorithm: suitable preprocessing of neural network inputs, improvement in the concept of supervised learning, fuzzyfication of neural network outputs, and utilization of on- line learning. Simulation results show improved recognition capabilities compared to a previous version of ART neural network algorithm, Multilayer Perceptron (MLP) neural network algorithm, and impedance based distance relay
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
An advanced artificial intelligence based algorithm for detecting and classifying faults on the power system transmission line is introduced. The approach utilizes self-organized, Adaptive Resonance Theory (ART) neural network, combined with fuzzy decision rule for interpretation of neural network outputs. Training of the neural network is based on the combined use of unsupervised and supervised learning methods. During training, a set of input events is transformed into a set of prototypes of typical input events. During application, real events are classified based on the interpretation of their matching to the prototypes through fuzzy decision rule. This study introduces several enhancements to the original version of the ART algorithm: suitable preprocessing of neural network inputs, improvement in the concept of supervised learning, fuzzyfication of neural network outputs, and utilization of on- line learning. Simulation results show improved recognition capabilities compared to a previous version of ART neural network algorithm, Multilayer Perceptron (MLP) neural network algorithm, and impedance based distance relay
Slavko Vasilic received his Ph.D in Electrical Engineering from Texas A&M University in 2004, and M.S.E.E. from University of Belgrade in 1999. He specializes in power systems, control systems, signal processing and artificial intelligence. He is a registered professional engineer in California and Maryland, and a member of IEEE.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 29,25 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Vasilic SlavkoSlavko Vasilic received his Ph.D in Electrical Engineering from Texas A&M University in 2004, and M.S.E.E. from University of Belgrade in 1999. He specializes in power systems, control systems, signal processing and . Bestandsnummer des Verkäufers 4968014
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - An advanced artificial intelligence based algorithm for detecting and classifying faults on the power system transmission line is introduced. The approach utilizes self-organized, Adaptive Resonance Theory (ART) neural network, combined with fuzzy decision rule for interpretation of neural network outputs. Training of the neural network is based on the combined use of unsupervised and supervised learning methods. During training, a set of input events is transformed into a set of prototypes of typical input events. During application, real events are classified based on the interpretation of their matching to the prototypes through fuzzy decision rule. This study introduces several enhancements to the original version of the ART algorithm: suitable preprocessing of neural network inputs, improvement in the concept of supervised learning, fuzzyfication of neural network outputs, and utilization of on- line learning. Simulation results show improved recognition capabilities compared to a previous version of ART neural network algorithm, Multilayer Perceptron (MLP) neural network algorithm, and impedance based distance relay. Bestandsnummer des Verkäufers 9783639216738
Anzahl: 2 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639216738
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639216738_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639216738
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639216738
Anzahl: 10 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639216738
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLING22Oct2817100451722
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA75836392167336
Anzahl: 1 verfügbar