Reasoning under uncertainty is a unique capability of human beings. Reasoning under uncertainty in AI is concerned with automated reasoning using contradicting or inconsistent information. That requires using more expressive forms of logic like higher-order logic, or using numeric representations for uncertainty like Bayesian Networks (BN), or Cost-Based Abduction (CBA). Abduction is ?Inference to the best explanation? which may result in many explanations. CBA is an important AI formalism for representing knowledge under uncertainty to enable us to choose among those explanations. In CBA, the data to be explained is treated as a goal that is necessarily true, and it is to be proven through a set of assumable hypotheses. The optimal solution for a given CBA instance, which is the best explanation, is the one associated with the Least Cost Proof (LCP). Finding LCP for a given CBA system is NP-Hard. Current methods suffer from exponential complexity, in the worst case. This book, therefore, provides a novel scalable and noise tolerant method using High Order Recurrent Neural Network (HORN) to solve CBA. Our work shows that HORN is a very promising method for solving NP-Hard problems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Reasoning under uncertainty is a unique capability of human beings. Reasoning under uncertainty in AI is concerned with automated reasoning using contradicting or inconsistent information. That requires using more expressive forms of logic like higher-order logic, or using numeric representations for uncertainty like Bayesian Networks (BN), or Cost-Based Abduction (CBA). Abduction is "Inference to the best explanation" which may result in many explanations. CBA is an important AI formalism for representing knowledge under uncertainty to enable us to choose among those explanations. In CBA, the data to be explained is treated as a goal that is necessarily true, and it is to be proven through a set of assumable hypotheses. The optimal solution for a given CBA instance, which is the best explanation, is the one associated with the Least Cost Proof (LCP). Finding LCP for a given CBA system is NP-Hard. Current methods suffer from exponential complexity, in the worst case. This book, therefore, provides a novel scalable and noise tolerant method using High Order Recurrent Neural Network (HORN) to solve CBA. Our work shows that HORN is a very promising method for solving NP-Hard problems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Andrews EmadEmad A. M. Andrews is a PhD candidate at the Department of Computer Science, University of Toronto. He has received both his BSc and MSc in Computer Science from the American University in Cairo. Emad s research interes. Bestandsnummer des Verkäufers 4969109
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 136. Bestandsnummer des Verkäufers 18128751024
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 136. Bestandsnummer des Verkäufers 26128751034
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 136 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Bestandsnummer des Verkäufers 131803749
Anzahl: 4 verfügbar