The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually.
Latha Parthiban is working as Professor in Department of Computer Science and Engineering at SSN College of Engineering,India. She earned her B.E from Madras University, M.E from Anna University and PhD from Pondicherry Central University. Her current research area involves applications of data mining, machine learning and medical image processing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020192755
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783639366990
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639366990
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9783639366990
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783639366990_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783639366990
Anzahl: 10 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Parthiban LathaLatha Parthiban is working as Professor in Department of Computer Science and Engineering at SSN College of Engineering,India. She earned her B.E from Madras University, M.E from Anna University and PhD from Pondicherr. Bestandsnummer des Verkäufers 4981385
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually. Bestandsnummer des Verkäufers 9783639366990
Anzahl: 2 verfügbar