This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method.
Dr. David Millan is a senior product director, an IT strategist and a chief data scientist with 10 years of international experience in data science, BI, innovation and applied research. He plays different roles: CSO&VP Data Science at Pragsis, Co-Founder at Bidoop, Research Assistant at Complutense University of Madrid, Associate Lecturer at UTad.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method. 252 pp. Englisch. Bestandsnummer des Verkäufers 9783639712957
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 151398315
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 252. Bestandsnummer des Verkäufers 26128055895
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 252 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Bestandsnummer des Verkäufers 131483016
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 252. Bestandsnummer des Verkäufers 18128055901
Anzahl: 4 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Workforce Distribution in Dynamic Multiagent Systems | David Millán-Ruiz (u. a.) | Taschenbuch | Englisch | 2014 | Scholars' Press | EAN 9783639712957 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 113176001
Anzahl: 5 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 252 pp. Englisch. Bestandsnummer des Verkäufers 9783639712957
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This work describes a novel approach to the problem of workforce distribution in dynamic multi-agent systems based on blackboard architectures, focusing especially on a real-world scenario: the multi-skill call centre. Traditionally, to address such highly-dynamic environments, diverse greedy heuristics have been applied to provide solutions in real-time. Basically, these heuristics perform a continuous re-planning on the system, taking into account its current state at all times. As decisions are greedily taken, the distribution of the workforce may be poor in the medium and/or long term. The usage of parallel memetic algorithms, which are more sophisticated than standard ad-hoc heuristics, can lead us towards much more accurate solutions. In order to effectively apply parallel memetic algorithms to such a dynamic environment, we introduce the concept of adaptive time window. Thus, the size of the time window depends upon the level of dynamism of the system at a given time. This research proposes a set of tools to automatically determine the dynamism of the system, as well as a novel and precise prediction module based on a neural network and a powerful optimization method. Bestandsnummer des Verkäufers 9783639712957
Anzahl: 1 verfügbar