Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973.
The present volume gives another representation of this formula in terms of Brownian last passages times, which, to our knowledge, has never been made in this sense.
The volume is devoted to various extensions and discussions of features and quantities stemming from the last passages times representation in the Brownian case such as: past-future martingales, last passage times up to a finite horizon, pseudo-inverses of processes... They are developed in eight chapters, with complements, appendices and exercises.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,04 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
Paperback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Bestandsnummer des Verkäufers GOR014317756
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. To the best of our knowledge this book discusses in a unique way last passage timesDiscovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0 F ,t? 0, P) - t . Bestandsnummer des Verkäufers 5049227
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and. Bestandsnummer des Verkäufers 9783642103940
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Bestandsnummer des Verkäufers 9783642103940
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and 292 pp. Englisch. Bestandsnummer des Verkäufers 9783642103940
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642103940_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 294. Bestandsnummer des Verkäufers 181375795
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783642103940
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 294. Bestandsnummer des Verkäufers 261375801
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 7862522-n
Anzahl: Mehr als 20 verfügbar