We are pleased to present this set of peer-reviewed papers from the ?rst MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support. The MICCAI conference has been the ?agship conference for the m- ical imaging community re?ecting the state of the art in techniques of segm- tation, registration, and robotic surgery. Yet, the transfer of these techniques to clinical practice is rarely discussed in the MICCAI conference. To address this gap, we proposed to hold this workshop with MICCAI in London in September 2009. The goal of the workshop was to show the application of content-based retrieval in clinical decision support. With advances in electronic patient record systems, a large number of pre-diagnosed patient data sets are now bec- ing available. These data sets are often multimodal consisting of images (x-ray, CT, MRI), videos and other time series, and textual data (free text reports and structuredclinicaldata). Analyzing thesemultimodalsourcesfordisease-speci?c information across patients can reveal important similarities between patients and hence their underlying diseases and potential treatments. Researchers are now beginning to use techniques of content-based retrieval to search for disea- speci?c information in modalities to ?nd supporting evidence for a disease or to automatically learn associations of symptoms and diseases. Benchmarking frameworks such as ImageCLEF (Image retrieval track in the Cross-Language Evaluation Forum) have expanded over the past ?ve years to include large m- ical image collections for testing various algorithms for medical image retrieval and classi?cation.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
We are pleased to present this set of peer-reviewed papers from the ?rst MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support. The MICCAI conference has been the ?agship conference for the m- ical imaging community re?ecting the state of the art in techniques of segm- tation, registration, and robotic surgery. Yet, the transfer of these techniques to clinical practice is rarely discussed in the MICCAI conference. To address this gap, we proposed to hold this workshop with MICCAI in London in September 2009. The goal of the workshop was to show the application of content-based retrieval in clinical decision support. With advances in electronic patient record systems, a large number of pre-diagnosed patient data sets are now bec- ing available. These data sets are often multimodal consisting of images (x-ray, CT, MRI), videos and other time series, and textual data (free text reports and structuredclinicaldata). Analyzing thesemultimodalsourcesfordisease-speci?c information across patients can reveal important similarities between patients and hence their underlying diseases and potential treatments. Researchers are now beginning to use techniques of content-based retrieval to search for disea- speci?c information in modalities to ?nd supporting evidence for a disease or to automatically learn associations of symptoms and diseases. Benchmarking frameworks such as ImageCLEF (Image retrieval track in the Cross-Language Evaluation Forum) have expanded over the past ?ve years to include large m- ical image collections for testing various algorithms for medical image retrieval and classi?cation.
This book constitutes the refereed proceedings of the first MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support, MCBR_CBS 2009, held in London, UK, in September 2009. The 10 revised full papers were carefully reviewed and selected from numerous submissions. The papers are divided on several topics on medical image retrieval, clinical decision making and multimodal fusion.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,26 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 3,41 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020218754
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 8577742-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783642117688
Anzahl: 2 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. We are pleased to present this set of peer-reviewed papers from the ?rst MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support. The MICCAI conference has been the ?agship conference for the m- ical imaging community re?ecting the state of the art in techniques of segm- tation, registration, and robotic surgery. Yet, the transfer of these techniques to clinical practice is rarely discussed in the MICCAI conference. To address this gap, we proposed to hold this workshop with MICCAI in London in September 2009. The goal of the workshop was to show the application of content-based retrieval in clinical decision support. With advances in electronic patient record systems, a large number of pre-diagnosed patient data sets are now bec- ing available. These data sets are often multimodal consisting of images (x-ray, CT, MRI), videos and other time series, and textual data (free text reports and structuredclinicaldata). Analyzing thesemultimodalsourcesfordisease-speci?c information across patients can reveal important similarities between patients and hence their underlying diseases and potential treatments.Researchers are now beginning to use techniques of content-based retrieval to search for disea- speci?c information in modalities to ?nd supporting evidence for a disease or to automatically learn associations of symptoms and diseases. Benchmarking frameworks such as ImageCLEF (Image retrieval track in the Cross-Language Evaluation Forum) have expanded over the past ?ve years to include large m- ical image collections for testing various algorithms for medical image retrieval and classi?cation. Constitutes the refereed proceedings of the first MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support, MCBR_CBS 2009, held in London, UK, in September 2009. This book includes the papers that are divided on several topics on medical image retrieval, clinical decision making and multimodal fusion. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783642117688
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 8577742
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We are pleased to present this set of peer-reviewed papers from the rst MICCAI Workshop on Medical Content-Based Retrieval for Clinical Decision Support. The MICCAI conference has been the agship conference for the m- ical imaging community re ecting the state of the art in techniques of segm- tation, registration, and robotic surgery. Yet, the transfer of these techniques to clinical practice is rarely discussed in the MICCAI conference. To address this gap, we proposed to hold this workshop with MICCAI in London in September 2009. The goal of the workshop was to show the application of content-based retrieval in clinical decision support. With advances in electronic patient record systems, a large number of pre-diagnosed patient data sets are now bec- ing available. These data sets are often multimodal consisting of images (x-ray, CT, MRI), videos and other time series, and textual data (free text reports and structuredclinicaldata). Analyzing thesemultimodalsourcesfordisease-speci c information across patients can reveal important similarities between patients and hence their underlying diseases and potential treatments. Researchers are now beginning to use techniques of content-based retrieval to search for disea- speci c information in modalities to nd supporting evidence for a disease or to automatically learn associations of symptoms and diseases. Benchmarking frameworks such as ImageCLEF (Image retrieval track in the Cross-Language Evaluation Forum) have expanded over the past ve years to include large m- ical image collections for testing various algorithms for medical image retrieval and classi cation. 136 pp. Englisch. Bestandsnummer des Verkäufers 9783642117688
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 8577742-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 8577742
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642117688_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783642117688
Anzahl: 10 verfügbar