This book deals with expert evaluation models in the form of semantic spaces with completeness and orthogonality properties (complete orthogonal semantic spaces). Theoretical and practical studies of some researchers have shown that these spaces describe expert evaluations most adequately, and as a result they were often included in more sophisticated models of intellectual systems for decision making and data analysis. Methods for constructing expert evaluation models of characteristics, comparative analysis of these models, studies of structural composition of their sets and constructing of generalized models are described. Models to obtain rating points for objects and groups of objects with qualitative and quantitative characteristics are presented. A number of regression models combining elements of classical and fuzzy regressions are presented.
All methods and models developed by the authors and described in the book are illustrated with examples from various fields of human activities.
This book meant for scientists in the field of computer science, expert systems, artificial intelligence and decision making; and also for engineers, post-graduate students and students who study the fuzzy set theory and its applications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book deals with expert evaluation models in the form of semantic spaces with completeness and orthogonality properties (complete orthogonal semantic spaces). Theoretical and practical studies of some researchers have shown that these spaces describe expert evaluations most adequately, and as a result they were often included in more sophisticated models of intellectual systems for decision making and data analysis. Methods for constructing expert evaluation models of characteristics, comparative analysis of these models, studies of structural composition of their sets and constructing of generalized models are described. Models to obtain rating points for objects and groups of objects with qualitative and quantitative characteristics are presented. A number of regression models combining elements of classical and fuzzy regressions are presented.
All methods and models developed by the authors and described in the book are illustrated with examples from various fields of human activities.
This book meant for scientists in the field of computer science, expert systems, artificial intelligence and decision making; and also for engineers, post-graduate students and students who study the fuzzy set theory and its applications.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 236 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 10662333/12
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research in Expert Fuzzy Information ProcessingDeals with expert estimation models in the form of semantic spaces with completeness and orthogonality properties Written by leading experts in the fieldThis book deals with e. Bestandsnummer des Verkäufers 5052106
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642201240_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783642201240
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020220502
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 240 pages. 9.30x6.40x0.80 inches. In Stock. Bestandsnummer des Verkäufers x-3642201245
Anzahl: 2 verfügbar