Decision trees and decision rule systems are widely used in different applications
as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection. The aims of this book are (i) the consideration of the sets
of decision trees, rules and reducts; (ii) study of relationships among these
objects; (iii) design of algorithms for construction of trees, rules and reducts;
and (iv) obtaining bounds on their complexity. Applications for supervised
machine learning, discrete optimization, analysis of acyclic programs, fault
diagnosis, and pattern recognition are considered also. This is a mixture of
research monograph and lecture notes. It contains many unpublished results.
However, proofs are carefully selected to be understandable for students.
The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The book
can be used in the creation of courses for graduate students.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Decision trees and decision rule systems are widely used in different applications
as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection. The aims of this book are (i) the consideration of the sets
of decision trees, rules and reducts; (ii) study of relationships among these
objects; (iii) design of algorithms for construction of trees, rules and reducts;
and (iv) obtaining bounds on their complexity. Applications for supervised
machine learning, discrete optimization, analysis of acyclic programs, fault
diagnosis, and pattern recognition are considered also. This is a mixture of
research monograph and lecture notes. It contains many unpublished results.
However, proofs are carefully selected to be understandable for students.
The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The book
can be used in the creation of courses for graduate students.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 10681958/12
Anzahl: 1 verfügbar
Anbieter: SpringBooks, Berlin, Deutschland
Hardcover. Zustand: Very Good. Unread, with a mimimum of shelfwear. Immediately dispatched from Germany. Bestandsnummer des Verkäufers CEA-2402C-TEPPICHMILI-09-1000XS
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A rough set approach to combinatorial machine learning Presents applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis and pattern recognition Written by leading experts in the fiel. Bestandsnummer des Verkäufers 5052402
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642209949_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2011 edition. 181 pages. 9.25x6.25x0.75 inches. In Stock. Bestandsnummer des Verkäufers x-3642209947
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020220707
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79636422099476
Anzahl: 1 verfügbar