In this work we derive asymptotically stabilizing control laws for
electrical power systems using two nonlinear control synthesis techniques.
For this transient stabilization problem the actuator considered is
a power electronic device, a controllable series capacitor (CSC).
The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model.
To start with, the CSC is modeled by the injection model which is
based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a
complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC)
methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system.
Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system.
Next, we consider a different control methodology, immersion and invariance (I\&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I\&I, we incorporate the power balance algebraic constraints in the load bus to the
SMIB swing equation, and extend the design philosophy to a
class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine
system with two load buses and a CSC. The controller performances are validated through simulations for all cases.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this work we derive asymptotically stabilizing control laws for
electrical power systems using two nonlinear control synthesis techniques.
For this transient stabilization problem the actuator considered is
a power electronic device, a controllable series capacitor (CSC).
The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model.
To start with, the CSC is modeled by the injection model which is
based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a
complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC)
methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system.
Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system.
Next, we consider a different control methodology, immersion and invariance (I\&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I\&I, we incorporate the power balance algebraic constraints in the load bus to the
SMIB swing equation, and extend the design philosophy to a
class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine
system with two load buses and a CSC. The controller performances are validated through simulations for all cases.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 11644445/12
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents Nonlinear Control Synthesis for Electrical Power SystemsWritten by leading experts in the fieldIn this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesi. Bestandsnummer des Verkäufers 5055307
Anzahl: Mehr als 20 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-272316
Anzahl: 9 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-247754
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I&I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases. Bestandsnummer des Verkäufers 9783642275302
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -In this work we derive asymptotically stabilizing control laws forelectrical power systems using two nonlinear control synthesis techniques.For this transient stabilization problem the actuator considered isa power electronic device, a controllable series capacitor (CSC).The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model.To start with, the CSC is modeled by the injection model which isbased on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes acomplex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC)methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system.Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system.Next, we consider a different control methodology, immersion and invariance (I&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I&I, we incorporate the power balance algebraic constraints in the load bus to theSMIB swing equation, and extend the design philosophy to aclass of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machinesystem with two load buses and a CSC. The controller performances are validated through simulations for all cases.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch. Bestandsnummer des Verkäufers 9783642275302
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I&I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases. 104 pp. Englisch. Bestandsnummer des Verkäufers 9783642275302
Anzahl: 2 verfügbar
Anbieter: SMASS Sellers, IRVING, TX, USA
Zustand: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Bestandsnummer des Verkäufers ASNT3-247754
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 104. Bestandsnummer des Verkäufers 1854505370
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 104. Bestandsnummer des Verkäufers 2654505360
Anzahl: 4 verfügbar