Book by Skillicorn David B
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
From the reviews:
Selected by Computing Reviews as one of the Best Reviews & Notable Books of 2013“This brief eight-chapter book seeks to provide the reader with the tools to perform analysis of high-dimensional datasets and spaces. ... book follows a very gentle trajectory. ... This gentle approach makes the book accessible to those unfamiliar with the field of data analysis. ... a good introduction to the area of cluster analysis of high-dimensional data. ... a useful addition to the existing literature on cluster analysis in high-dimensional spaces by providing a starting point for those wanting an initial grounding in the area.” (Harry Strange, Computing Reviews, May, 2013)
This book proposes new ways of thinking about high-dimensional spaces using two models: the skeleton that relates the clusters to one another, and the boundaries in empty space that provide new perspectives on outliers and on outlying regions.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 29,65 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,57 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020224449
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642333972_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets are large and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers. 120 pp. Englisch. Bestandsnummer des Verkäufers 9783642333972
Anzahl: 2 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783642333972
Anzahl: 10 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers. Bestandsnummer des Verkäufers 9783642333972
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 120. Bestandsnummer des Verkäufers 2651416542
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 2012 edition. 117 pages. 9.21x0.71x6.18 inches. In Stock. Bestandsnummer des Verkäufers x-3642333974
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 120 29 Illus. Bestandsnummer des Verkäufers 57094657
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 120. Bestandsnummer des Verkäufers 1851416532
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. High-dimensional spaces arise naturally as a way of modelling datasets with many attributes Author suggests new ways of thinking about high-dimensional spaces using two models Valuable for practitioners, graduate students and researchers. Bestandsnummer des Verkäufers 5057255
Anzahl: Mehr als 20 verfügbar