This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.
This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.
This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,08 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 306. Bestandsnummer des Verkäufers 1851413490
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes supplementary material: sn.pub/extrasThis work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because t. Bestandsnummer des Verkäufers 5058682
Anzahl: Mehr als 20 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-272426
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 306. Bestandsnummer des Verkäufers 2651413496
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option. Bestandsnummer des Verkäufers 9783642376160
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 304 pp. Englisch. Bestandsnummer des Verkäufers 9783642376160
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables.This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when standard methods are not a viable option. 304 pp. Englisch. Bestandsnummer des Verkäufers 9783642376160
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 306 11 Illus. Bestandsnummer des Verkäufers 57097767
Anzahl: 1 verfügbar
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHUB272426
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642376160_new
Anzahl: Mehr als 20 verfügbar