Recently, several applications, primarily driven
by microtechnology, have emerged where the use of materials with
tailored electromagnetic (dielectric) properties are necessary for a successful overall design. The ``tailored'' aggregate properties are
achieved by combining an easily moldable base matrix with particles
having dielectric properties that are chosen to deliver (desired) effective properties.
In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response, which can be important to determine possible failures in ``hot spots.'' This necessitates
a stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well.
A central objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response of
such materials by direct simulation using standard laptop/desktop equipment. Accordingly, this monograph covers:
(1) The foundations of Maxwell's equations,
(2) Basic homogenization theory,
(3) Coupled systems (electromagnetic, thermal, mechanical and chemical),
(4) Numerical methods and
(5) An introduction to select biological problems.
The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
AUTHOR BIOGRAPHY: T. I. Zohdi is currently Professor and Vice Chair for Instruction in the Department of Mechanical Engineering and Chair of the Engineering Science Program at UC Berkeley.
He received his Ph.D. in 1997 in Computational and Applied Mathematics from UT Austin and his Habilitation in Mechanics from the Leibniz Universitaet in Hannover, Germany in 2002.
His main research interests are in micromechanical material design, particulate flow and the mechanics of high-strength fabric, with and emphasis on computational approaches for nonconvex multiscale-multiphysics inverse problems, particularly addressing the crucial issue of how large numbers of microconstituents interact to produce macroscale aggregate behavior. He published over 85 archival refereed journal papers and four books.
In 2000, he received the Zienkiewicz Prize and the Medal, and in 2003,he received the Junior Achievement Award for the American Academy of Mechanics. He is a Fellow of the United States Association for Computational Mechanics (USACM) and the International Association for Computational Mechanics (IACM), and is currently Vice President of USACM, and will become the USACM President in 2012.
Recently, several applications, primarily driven
by microtechnology, have emerged where the use of materials with
tailored electromagnetic (dielectric) properties are necessary for a successful overall design. The ``tailored'' aggregate properties are
achieved by combining an easily moldable base matrix with particles
having dielectric properties that are chosen to deliver (desired) effective properties.
In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response, which can be important to determine possible failures in ``hot spots.'' This necessitates
a stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well.
A central objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response of
such materials by direct simulation using standard laptop/desktop equipment. Accordingly, this monograph covers:
(1) The foundations of Maxwell's equations,
(2) Basic homogenization theory,
(3) Coupled systems (electromagnetic, thermal, mechanical and chemical),
(4) Numerical methods and
(5) An introduction to select biological problems.
The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,56 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783642426612
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020226941
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. xviii + 178. Bestandsnummer des Verkäufers 26142288703
Anzahl: 4 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642426612_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Recently, several applications, primarily driven by microtechnology, have emerged where the use of materials with tailored electromagnetic (dielectric) properties are necessary for a successful overall design. The ``tailored'' aggregate properties are achieved by combining an easily moldable base matrix with particles having dielectric properties that are chosen to deliver (desired) effective properties. In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response, which can be important to determine possible failures in ``hot spots.'' This necessitates a stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well. A central objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response of such materials by direct simulation using standard laptop/desktop equipment. Accordingly, this monograph covers: (1) The foundations of Maxwell's equations, (2) Basic homogenization theory,(3) Coupled systems (electromagnetic, thermal, mechanical and chemical),(4) Numerical methods and(5) An introduction to select biological problems.The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials. 196 pp. Englisch. Bestandsnummer des Verkäufers 9783642426612
Anzahl: 2 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783642426612
Anzahl: 10 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. xviii + 178 59 Illus. (9 Col.). Bestandsnummer des Verkäufers 135043296
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research on Electromagnetic Properties of Multiphase Dielectrics A Primer on Modeling, Theory and Computation Written by a leading expert in the fieldAUTHOR BIOGRAPHY: T. I. Zohdi is currently Professor and Vice Chair for Instruct. Bestandsnummer des Verkäufers 5060376
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. xviii + 178. Bestandsnummer des Verkäufers 18142288693
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Recently, several applications, primarily drivenby microtechnology, have emerged where the use of materials withtailored electromagnetic (dielectric) properties are necessary for a successfuloverall design. The ``tailored'' aggregate properties areachieved by combining an easily moldable base matrix with particleshaving dielectric properties that are chosen to deliver (desired) effective properties.In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response,which can be important to determine possible failures in ``hot spots.'' This necessitatesa stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well.A central objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response ofsuch materials by direct simulation using standard laptop/desktop equipment. Accordingly, this monograph covers:(1) The foundations of Maxwell's equations(2) Basic homogenization theory(3) Coupled systems (electromagnetic, thermal, mechanical and chemical)(4) Numerical methods and(5) An introduction to select biological problems.The text can be viewed as a research monograph suitable for use in an upper-division undergraduate or first year graduate course geared towards students in the applied sciences, mechanics and mathematics that have an interest in the analysis of particulate materials.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Bestandsnummer des Verkäufers 9783642426612
Anzahl: 1 verfügbar