Verwandte Artikel zu Evolutionary Computations: New Algorithms and their...

Evolutionary Computations: New Algorithms and their Applications to Evolutionary Robots - Softcover

 
9783642535529: Evolutionary Computations: New Algorithms and their Applications to Evolutionary Robots

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1. Evolutionary Algorithms: Revisited.- 1.1 Introduction.- 1.2 Stochastic Optimization Algorithms.- 1.2.1 Monte Carlo Algorithm.- 1.2.2 Hill Climbing Algorithm.- 1.2.3 Simulated Annealing Algorithm.- 1.2.4 Evolutionary Algorithms.- 1.3 Properties of Stochastic Optimization Algorithms.- 1.4 Variants of Evolutionary Algorithms.- 1.4.1 Genetic Algorithms.- 1.4.2 Evolution Strategies.- 1.4.3 Evolutionary Programming.- 1.4.4 Genetic Programming.- 1.5 Basic Mechanisms of Evolutionary Algorithms.- 1.5.1 Crossover Mechanisms.- 1.5.2 Mutation Mechanisms.- 1.5.3 Selection Mechanisms.- 1.6 Similarities and Differences of Evolutionary Algorithms.- 1.7 Merits and Demerits of Evolutionary Algorithms.- 1.7.1 Merits.- 1.7.2 Demerits.- 1.8 Summary.- 2. A Novel Evolution Strategy Algorithm.- 2.1 Introduction.- 2.2 Development of New Variation Operators.- 2.2.1 Subpopulations-Based Max-mean Arithmetical Crossover.- 2.2.2 Time-Variant Mutation.- 2.3 Proposed Novel Evolution Strategy.- 2.3.1 Initial Population.- 2.3.2 Crossover.- 2.3.3 Mutation.- 2.3.4 Evaluation.- 2.3.5 Alternation of Generation.- 2.4 Proposed NES: How Does It Work?.- 2.5 Performance of the Proposed Evolution Strategy.- 2.5.1 Test Functions.- 2.5.2 Implementation and Results.- 2.6 Empirical Investigations for Exogenous Parameters.- 2.6.1 Investigation for Optimal Subpopulation Number.- 2.6.2 Investigation for Optimal Degree of Dependency.- 2.7 Summary.- 3. Evolutionary Optimization of Constrained Problems.- 3.1 Introduction.- 3.2 Constrained Optimization Problem.- 3.3 Constraint-Handling in Evolutionary Algorithms.- 3.4 Characteristics of the NES Algorithm.- 3.4.1 Characteristics of the SBMAC Operator.- 3.4.2 Characteristics of the TVM Operator.- 3.4.3 Effects of the Elitist Selection.- 3.5 Construction of the Constrained Fitness Function.- 3.6 Test Problems.- 3.7 Implementation, Results and Discussions.- 3.7.1 Implementation.- 3.7.2 Results and Discussions.- 3.8 Summary.- 4. An Incest Prevented Evolution Strategy Algorithm.- 4.1 Introduction.- 4.2 Incest Prevention: A Natural Phenomena.- 4.3 Proposed Incest Prevented Evolution Strategy.- 4.3.1 Impact of Incest Effect on Variation Operators.- 4.3.2 Population Diversity and Similarity.- 4.3.3 Incest Prevention Method.- 4.4 Performance of the Proposed Incest Prevented Evolution Strategy.- 4.4.1 Case I: Test Functions for Comparison with GA, EP, ESs and NES.- 4.4.2 Case II: Test Functions for Comparison Between the NES and IPES Algorithms.- 4.5 Implementation and Experimental Results.- 4.5.1 Case I: Implementation and Results.- 4.5.2 Case II: Implementation and Results.- 4.6 Summary.- 5. Evolutionary Solution of Optimal Control Problems.- 5.1 Introduction.- 5.2 Conventional Variation Operators.- 5.2.1 Arithmetical Crossover/Intermediate Crossover.- 5.2.2 Uniform Mutation.- 5.3 Optimal Control Problems.- 5.3.1 Linear-Quadratic Control Problem.- 5.3.2 Push-Cart Control Problem.- 5.4 Simulation Examples.- 5.4.1 Simulation Example I: ESs with TVM and UM Operators.- 5.4.2 Simulation Example II: ESs with SBMAC and Conventional Methods.- 5.4.3 Implementation Details.- 5.5 Results and Discussions.- 5.5.1 Results for Example I.- 5.5.2 Results for Example II.- 5.5.3 Results from the Evolutionary Solution.- 5.6 Summary.- 6. Evolutionary Design of Robot Controllers.- 6.1 Introduction.- 6.2 A Mobile Robot with Two Independent Driving Wheels.- 6.3 Optimal Servocontroller Design for the Robot.- 6.3.1 Type-1 Optimal Servocontroller Design.- 6.3.2 Type-2 Optimal Servocontroller Design.- 6.4 Construction of the Fitness Function for the Controllers.- 6.4.1 Basic Notion.- 6.4.2 Method.- 6.5 Considerations for Design and Simulations.- 6.6 Results and Discussions.- 6.6.1 Design Results for Type-1 Controller.- 6.6.2 Design Results for Type-2 Controller.- 6.7 Summary.- 7. Evolutionary Behavior-Based Control of Mobile Robots.- 7.1 Introduction.- 7.2 An Evolution Strategy Using Statistical Information of Subgroups.- 7.2.1 Group Division.- 7.2.2 Max-mean Arit

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9783540209010: Evolutionary Computations: New Algorithms and their Applications to Evolutionary Robots: 147 (Studies in Fuzziness and Soft Computing)

Vorgestellte Ausgabe

ISBN 10:  3540209018 ISBN 13:  9783540209010
Verlag: Springer, 2004
Hardcover