Verwandte Artikel zu Pattern Recognition: Concepts, Methods and Applications

Pattern Recognition: Concepts, Methods and Applications - Softcover

 
9783642566523: Pattern Recognition: Concepts, Methods and Applications

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1 Basic Notions.- 1.1 Object Recognition.- 1.2 Pattern Similarity and PR Tasks.- 1.2.1 Classification Tasks.- 1.2.2 Regression Tasks.- 1.2.3 Description Tasks.- 1.3 Classes, Patterns and Features.- 1.4 PR Approaches.- 1.4.1 Data Clustering.- 1.4.2 Statistical Classification.- 1.4.3 Neural Networks.- 1.4.4 Structural PR.- 1.5 PR Project.- 1.5.1 Project Tasks.- 1.5.2 Training and Testing.- 1.5.3 PR Software.- 2 Pattern Discrimination.- 2.1 Decision Regions and Functions.- 2.1.1 Generalized Decision Functions.- 2.1.2 Hyperplane Separability.- 2.2 Feature Space Metrics.- 2.3 The Covariance Matrix.- 2.4 Principal Components.- 2.5 Feature Assessment.- 2.5.1 Graphic Inspection.- 2.5.2 Distribution Model Assessment.- 2.5.3 Statistical Inference Tests.- 2.6 The Dimensionality Ratio Problem.- Exercises.- 3 Data Clustering.- 3.1 Unsupervised Classification.- 3.2 The Standardization Issue.- 3.3 Tree Clustering.- 3.3.1 Linkage Rules.- 3.3.2 Tree Clustering Experiments.- 3.4 Dimensional Reduction.- 3.5 K-Means Clustering.- 3.6 Cluster Validation.- Exercises.- 4 Statistical Classification.- 4.1 Linear Discriminants.- 4.1.1 Minimum Distance Classifier.- 4.1.2 Euclidian Linear Discriminants.- 4.1.3 Mahalanobis Linear Discriminants.- 4.1.4 Fisher's Linear Discriminant.- 4.2 Bayesian Classification.- 4.2.1 Bayes Rule for Minimum Risk.- 4.2.2 Normal Bayesian Classification.- 4.2.3 Reject Region.- 4.2.4 Dimensionality Ratio and Error Estimation.- 4.3 Model-Free Techniques.- 4.3.1 The Parzen Window Method.- 4.3.2 The K-Nearest Neighbours Method.- 4.3.3 The ROC Curve.- 4.4 Feature Selection.- 4.5 Classifier Evaluation.- 4.6 Tree Classifiers.- 4.6.1 Decision Trees and Tables.- 4.6.2 Automatic Generation of Tree Classifiers.- 4.7 Statistical Classifiers in Data Mining.- Exercises.- 5 Neural Networks.- 5.1 LMS Adjusted Discriminants.- 5.2 Activation Functions.- 5.3 The Perceptron Concept.- 5.4 Neural Network Types.- 5.5 Multi-Layer Perceptrons.- 5.5.1 The Back-Propagation Algorithm.- 5.5.2 Practical aspects.- 5.5.3 Time Series.- 5.6 Performance of Neural Networks.- 5.6.1 Error Measures.- 5.6.2 The Hessian Matrix.- 5.6.3 Bias and Variance in NN Design.- 5.6.4 Network Complexity.- 5.6.5 Risk Minimization.- 5.7 Approximation Methods in NN Training.- 5.7.1 The Conjugate-Gradient Method.- 5.7.2 The Levenberg-Marquardt Method.- 5.8 Genetic Algorithms in NN Training.- 5.9 Radial Basis Functions.- 5.10 Support Vector Machines.- 5.11 Kohonen Networks.- 5.12 Hopfield Networks.- 5.13 Modular Neural Networks.- 5.14 Neural Networks in Data Mining.- Exercises.- 6 Structural Pattern Recognition.- 6.1 Pattern Primitives.- 6.1.1 Signal Primitives.- 6.1.2 Image Primitives.- 6.2 Structural Representations.- 6.2.1 Strings.- 6.2.2 Graphs.- 6.2.3 Trees.- 6.3 Syntactic Analysis.- 6.3.1 String Grammars.- 6.3.2 Picture Description Language.- 6.3.3 Grammar Types.- 6.3.4 Finite-State Automata.- 6.3.5 Attributed Grammars.- 6.3.6 Stochastic Grammars.- 6.3.7 Grammatical Inference.- 6.4 Structural Matching.- 6.4.1 String Matching.- 6.4.2 Probabilistic Relaxation Matching.- 6.4.3 Discrete Relaxation Matching.- 6.4.4 Relaxation Using Hopfield Networks.- 6.4.5 Graph and Tree Matching.- Exercises.- Appendix A-CD Datasets.- A.1 Breast Tissue.- A.2 Clusters.- A.3 Cork Stoppers.- A.4 Crimes.- A.5 Cardiotocographic Data.- A.6 Electrocardiograms.- A.7 Foetal Heart Rate Signals.- A.8 FHR-Apgar.- A.9 Firms.- A.10 Foetal Weight.- A.11 Food.- A.12 Fruits.- A.13 Impulses on Noise.- A.14 MLP Sets.- A.15 Norm2c2d.- A.16 Rocks.- A.17 Stock Exchange.- A.18 Tanks.- A.19 Weather.- Appendix B-CD Tools.- B.1 Adaptive Filtering.- B.2 Density Estimation.- B.3 Design Set Size.- B.4 Error Energy.- B.5 Genetic Neural Networks.- B.6 Hopfield network.- B.7 k-NN Bounds.- B.8 k-NN Classification.- B.9 Perceptron.- B.10 Syntactic Analysis.- Appendix C-Orthonormal Transformation.- Appendix C-Orthonormal Transformation.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels