Fedoryuk's book is a unique reference for the asymptotic theory of ordinary differential equations given all the important formulae of this field. It is also an indispensable guide to the literature up to the most recent research.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the "formal asymptotic solution" (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term "Stokes line" used in the book is equivalent to the term "anti-Stokes line" employed in the physics literature.
This encyclopaedic book describes the developments of the last years in the area of asymptotic methods for linear ODEs and systems in the real and complex domain. Basically all main results and methods are given. Almost every known asymptotic formula is referred to. Written in a style readable for the nonspecialist in the area, the book is a guide to the extensive literature developed recently in the field. It is a much needed exposition and a comprehensive source of information for studentsand researchers in mathematics as well as in mechanics and physics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,75 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,36 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020232008
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783642634352
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783642634352
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642634352_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the 'formal asymptotic solution' (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term 'Stokes line' used in the book is equivalent to the term 'anti-Stokes line' employed in the physics literature. 376 pp. Englisch. Bestandsnummer des Verkäufers 9783642634352
Anzahl: 2 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 376. Bestandsnummer des Verkäufers 2648029755
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 376 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 44785636
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 376. Bestandsnummer des Verkäufers 1848029745
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the paramete. Bestandsnummer des Verkäufers 5065738
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the 'formal asymptotic solution' (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term 'Stokes line' used in the book is equivalent to the term 'anti-Stokes line' employed in the physics literature.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 376 pp. Englisch. Bestandsnummer des Verkäufers 9783642634352
Anzahl: 1 verfügbar