Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5).
Today, the theory of random processes represents a large field of mathematics with many different branches. This Introduction to the Theory of Random Processes applies mathematical models that are simple, but that have some importance for applications. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topics are the ergodic theorem, the method of Kolmogorov's differential equations and Brownian motion, and the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation. The chapters that follow outline the foundations of stochastic analysis. They deal with random processes as curves in the space of random variables with the norm of quadratic mean. Random processes are then described by linear stochastic differential equations and their convergence behaviour is explored. The fundamentals of spectral analysis of stationary processes are considered and, finally, some special problems of estimation and filtration are discussed. In chapter 6 an attempt is made to apply direct probabilistic methods for sums of i.i.d. variables to a multi-server-system. As a complement, chapters 9 to 11 deal with nonlinear stochastic differential equations for diffusion processes.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783642727191
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642727191_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783642727191
Anzahl: 10 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 132. Bestandsnummer des Verkäufers 2654514690
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 132 7 Figures, 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 55077853
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 125 pages. 9.25x6.10x0.39 inches. In Stock. Bestandsnummer des Verkäufers x-3642727190
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 132. Bestandsnummer des Verkäufers 1854514696
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes. Bestandsnummer des Verkäufers 5069124
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. Bestandsnummer des Verkäufers 9783642727191
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5). Bestandsnummer des Verkäufers 9783642727191
Anzahl: 1 verfügbar