Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term "Boolean valuation" to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term "Boolean valuation" to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,80 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in analytic or cut-free methods. We use the term analytic to . Bestandsnummer des Verkäufers 5072647
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in 'analytic' or 'cut-free' methods. We use the term 'analytic' to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as 'analysing' the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term 'Boolean valuation' to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 176 pp. Englisch. Bestandsnummer des Verkäufers 9783642867200
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in 'analytic' or 'cut-free' methods. We use the term 'analytic' to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as 'analysing' the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term 'Boolean valuation' to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier). Bestandsnummer des Verkäufers 9783642867200
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in 'analytic' or 'cut-free' methods. We use the term 'analytic' to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as 'analysing' the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term 'Boolean valuation' to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier). 176 pp. Englisch. Bestandsnummer des Verkäufers 9783642867200
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783642867200_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. First-Order Logic 0.56. Book. Bestandsnummer des Verkäufers BBS-9783642867200
Anzahl: 5 verfügbar
Anbieter: Agapea Libros, Malaga, Spanien
Zustand: New. Idioma/Language: Inglés. Except for this preface, this study is completely self-contained. It is intended to serve both as an introduction to Quantification Theory and as an exposition of new results and techniques in "analytic" or "cut-free" methods. We use the term "analytic" to apply to any proof procedure which obeys the subformula principle (we think of such a procedure as "analysing" the formula into its successive components). Gentzen cut-free systems are perhaps the best known example of ana lytic proof procedures. Natural deduction systems, though not usually analytic, can be made so (as we demonstrated in [3]). In this study, we emphasize the tableau point of view, since we are struck by its simplicity and mathematical elegance. Chapter I is completely introductory. We begin with preliminary material on trees (necessary for the tableau method), and then treat the basic syntactic and semantic fundamentals of propositional logic. We use the term "Boolean valuation" to mean any assignment of truth values to all formulas which satisfies the usual truth-table conditions for the logical connectives. Given an assignment of truth-values to all propositional variables, the truth-values of all other formulas under this assignment is usually defined by an inductive procedure. We indicate in Chapter I how this inductive definition can be made explicit-to this end we find useful the notion of a formation tree (which we discuss earlier). *** Nota: Los envíos a España peninsular, Baleares y Canarias se realizan a través de mensajería urgente. No aceptamos pedidos con destino a Ceuta y Melilla. Bestandsnummer des Verkäufers 7300761
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 18786259-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783642867200
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 18786259-n
Anzahl: Mehr als 20 verfügbar