Verwandte Artikel zu Euler-Lagrange-Gleichungen in der angewandten Analysis

Euler-Lagrange-Gleichungen in der angewandten Analysis - Softcover

 
9783656371793: Euler-Lagrange-Gleichungen in der angewandten Analysis

Inhaltsangabe

Studienarbeit aus dem Jahr 2011 im Fachbereich Mathematik - Analysis, Universität Rostock (Institut für Mathematik), Veranstaltung: Mathematisches Seminar - Angewandte Analysis, Sprache: Deutsch, Abstract: In diesem Seminar geht es um die mathematische Modellierung und Optimierung von Windkraftanlagen bzw. Windrädern. Dazu wird es notwendig sein einführend auf die Mechanik einzugehen. Die Mechanik handelt von der Dynamik der Teilchen, starren Körpern oder auch kontinuierlichen Medien. Die Mechanik hat durch die Mechanik Newtons eine enorme Rolle für die Mathematik, Technik und Naturwissenschaften zugesprochen bekommen. Die Entwicklung von Differentialgleichungen wurde durch die Behandlung der Mechanik angeregt. Heutzutage ist der Einfluss sogar auf die Gruppendarstellung, Geometrie und Topologie nachweisbar, wobei sich diese Entwicklungen wieder auf die anderen Wissenschaften auswirk(t)en. Für dieses Seminar interessante Formulierungen der Mechanik sind einerseits die durch Lagrange und andererseits die durch Hamilton. Diese sind umfassender als die Formulierung der Mechanik Newtons, da sie auch Feldtheorien und Zwangsbedingungen berücksichtigen. Dabei unterliegen diese zwei Formulierungen unterschiedlicher Betrachtungweisen der Mechanik. Während die Hamiltonsche Mechanik unmittelbar auf dem Energiekonzept beruht und eng in Verbindung mit der Quantenmechanik und allgemeinen Relativitätstheorie steht, ist die Lagrangesche Mechanik auf Variationsprinzipien begründet, die direkt zur allgemeinen Relativitätstheorie führt. Diese Variationsprinzipien sind Koordinatensystemunabhängig. Die Variationsrechnung beschäftigt sich mit reellen Funktionalen, deren Argumente Funktionen sind. Diese können etwa Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionale, also solche, für die das Funktional ein Maximum, ein Minimum oder einen Sattelpunkt annimmt. Es gibt zwei Arten von Variationsprinzipien. Einerseits gibt e

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Studienarbeit aus dem Jahr 2011 im Fachbereich Mathematik - Analysis, Universität Rostock (Institut für Mathematik), Veranstaltung: Mathematisches Seminar - Angewandte Analysis, Sprache: Deutsch, Abstract: In diesem Seminar geht es um die mathematische Modellierung und Optimierung von Windkraftanlagen bzw. Windrädern. Dazu wird es notwendig sein einführend auf die Mechanik einzugehen. Die Mechanik handelt von der Dynamik der Teilchen, starren Körpern oder auch kontinuierlichen Medien. Die Mechanik hat durch die Mechanik Newtons eine enorme Rolle für die Mathematik, Technik und Naturwissenschaften zugesprochen bekommen. Die Entwicklung von Differentialgleichungen wurde durch die Behandlung der Mechanik angeregt. Heutzutage ist der Einfluss sogar auf die Gruppendarstellung, Geometrie und Topologie nachweisbar, wobei sich diese Entwicklungen wieder auf die anderen Wissenschaften auswirk(t)en. Für dieses Seminar interessante Formulierungen der Mechanik sind einerseits die durch Lagrange und andererseits die durch Hamilton. Diese sind umfassender als die Formulierung der Mechanik Newtons, da sie auch Feldtheorien und Zwangsbedingungen berücksichtigen. Dabei unterliegen diese zwei Formulierungen unterschiedlicher Betrachtungweisen der Mechanik. Während die Hamiltonsche Mechanik unmittelbar auf dem Energiekonzept beruht und eng in Verbindung mit der Quantenmechanik und allgemeinen Relativitätstheorie steht, ist die Lagrangesche Mechanik auf Variationsprinzipien begründet, die direkt zur allgemeinen Relativitätstheorie führt. Diese Variationsprinzipien sind Koordinatensystemunabhängig. Die Variationsrechnung beschäftigt sich mit reellen Funktionalen, deren Argumente Funktionen sind. Diese können etwa Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionale, also solche, für die das Funktional ein Maximum, ein Minimum oder einen Sattelpunkt annimmt. Es gibt zwei Arten von Variationsprinzipien. Einerseits gibt e

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagGRIN Verlag
  • Erscheinungsdatum2013
  • ISBN 10 3656371792
  • ISBN 13 9783656371793
  • EinbandTapa blanda
  • SpracheDeutsch
  • Auflage2
  • Anzahl der Seiten36
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Euler-Lagrange-Gleichungen in der angewandten Analysis

Foto des Verkäufers

Felix Kasten
Verlag: GRIN Verlag, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Euler-Lagrange-Gleichungen in der angewandten Analysis | Felix Kasten | Taschenbuch | 36 S. | Deutsch | 2013 | GRIN Verlag | EAN 9783656371793 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Bestandsnummer des Verkäufers 106051032

Verkäufer kontaktieren

Neu kaufen

EUR 17,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Felix Kasten
Verlag: GRIN Verlag, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Studienarbeit aus dem Jahr 2011 im Fachbereich Mathematik - Analysis, Universität Rostock (Institut für Mathematik), Veranstaltung: Mathematisches Seminar - Angewandte Analysis, Sprache: Deutsch, Abstract: In diesem Seminar geht es um die mathematische Modellierung und Optimierung von Windkraftanlagen bzw. Windrädern. Dazu wird es notwendig sein einführend auf die Mechanik einzugehen. Die Mechanik handelt von der Dynamik der Teilchen, starren Körpern oder auch kontinuierlichen Medien. Die Mechanik hat durch die Mechanik Newtons eine enorme Rolle für die Mathematik, Technik und Naturwissenschaften zugesprochen bekommen. Die Entwicklung von Differentialgleichungen wurde durch die Behandlung der Mechanik angeregt. Heutzutage ist der Einfluss sogar auf die Gruppendarstellung, Geometrie und Topologie nachweisbar, wobei sich diese Entwicklungen wieder auf die anderen Wissenschaften auswirk(t)en. Für dieses Seminar interessante Formulierungen der Mechanik sind einerseits die durch Lagrange und andererseits die durch Hamilton. Diese sind umfassender als die Formulierung der Mechanik Newtons, da sie auch Feldtheorien und Zwangsbedingungen berücksichtigen. Dabei unterliegen diese zwei Formulierungen unterschiedlicher Betrachtungweisen der Mechanik. Während die Hamiltonsche Mechanik unmittelbar auf dem Energiekonzept beruht und eng in Verbindung mit der Quantenmechanik und allgemeinen Relativitätstheorie steht, ist die Lagrangesche Mechanik auf Variationsprinzipien begründet, die direkt zur allgemeinen Relativitätstheorie führt.Diese Variationsprinzipien sind Koordinatensystemunabhängig. Die Variationsrechnung beschäftigt sich mit reellen Funktionalen, deren Argumente Funktionen sind. Diese können etwa Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionale, also solche, für die das Funktional ein Maximum, ein Minimum oder einen Sattelpunkt annimmt. Es gibt zwei Arten von Variationsprinzipien. Einerseits gibt es die Differentialprinzipien, zu denen das D' Alambertsche Prinzip zu zählen ist. Andererseits existieren auch Integralprinzipien. Es soll in den folgenden Kapiteln vor allem darum gehen, dass eine Einführung in die Mechanik und einige Anwendungsbeispiele gegeben werdensollen. Bestandsnummer des Verkäufers 9783656371793

Verkäufer kontaktieren

Neu kaufen

EUR 17,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Felix Kasten
Verlag: GRIN Verlag Feb 2013, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Studienarbeit aus dem Jahr 2011 im Fachbereich Mathematik - Analysis, Universität Rostock (Institut für Mathematik), Veranstaltung: Mathematisches Seminar - Angewandte Analysis, Sprache: Deutsch, Abstract: In diesem Seminar geht es um die mathematische Modellierung und Optimierung von Windkraftanlagen bzw. Windrädern. Dazu wird es notwendig sein einführend auf die Mechanik einzugehen. Die Mechanik handelt von der Dynamik der Teilchen, starren Körpern oder auch kontinuierlichen Medien. Die Mechanik hat durch die Mechanik Newtons eine enorme Rolle für die Mathematik, Technik und Naturwissenschaften zugesprochen bekommen. Die Entwicklung von Differentialgleichungen wurde durch die Behandlung der Mechanik angeregt. Heutzutage ist der Einfluss sogar auf die Gruppendarstellung, Geometrie und Topologie nachweisbar, wobei sich diese Entwicklungen wieder auf die anderen Wissenschaften auswirk(t)en. Für dieses Seminar interessante Formulierungen der Mechanik sind einerseits die durch Lagrange und andererseits die durch Hamilton. Diese sind umfassender als die Formulierung der Mechanik Newtons, da sie auch Feldtheorien und Zwangsbedingungen berücksichtigen. Dabei unterliegen diese zwei Formulierungen unterschiedlicher Betrachtungweisen der Mechanik. Während die Hamiltonsche Mechanik unmittelbar auf dem Energiekonzept beruht und eng in Verbindung mit der Quantenmechanik und allgemeinen Relativitätstheorie steht, ist die Lagrangesche Mechanik auf Variationsprinzipien begründet, die direkt zur allgemeinen Relativitätstheorie führt.Diese Variationsprinzipien sind Koordinatensystemunabhängig. Die Variationsrechnung beschäftigt sich mit reellen Funktionalen, deren Argumente Funktionen sind. Diese können etwa Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionale, also solche, für die das Funktional ein Maximum, ein Minimum oder einen Sattelpunkt annimmt. Es gibt zwei Arten von Variationsprinzipien. Einerseits gibt es die Differentialprinzipien, zu denen das D' Alambertsche Prinzip zu zählen ist. Andererseits existieren auch Integralprinzipien. Es soll in den folgenden Kapiteln vor allem darum gehen, dass eine Einführung in die Mechanik und einige Anwendungsbeispiele gegeben werden sollen.Books on Demand GmbH, Überseering 33, 22297 Hamburg 36 pp. Deutsch. Bestandsnummer des Verkäufers 9783656371793

Verkäufer kontaktieren

Neu kaufen

EUR 17,99
Währung umrechnen
Versand: EUR 1,99
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Felix Kasten
Verlag: GRIN Verlag Feb 2013, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Studienarbeit aus dem Jahr 2011 im Fachbereich Mathematik - Analysis, Universität Rostock (Institut für Mathematik), Veranstaltung: Mathematisches Seminar - Angewandte Analysis, Sprache: Deutsch, Abstract: In diesem Seminar geht es um die mathematische Modellierung und Optimierung von Windkraftanlagen bzw. Windrädern. Dazu wird es notwendig sein einführend auf die Mechanik einzugehen. Die Mechanik handelt von der Dynamik der Teilchen, starren Körpern oder auch kontinuierlichen Medien. Die Mechanik hat durch die Mechanik Newtons eine enorme Rolle für die Mathematik, Technik und Naturwissenschaften zugesprochen bekommen. Die Entwicklung von Differentialgleichungen wurde durch die Behandlung der Mechanik angeregt. Heutzutage ist der Einfluss sogar auf die Gruppendarstellung, Geometrie und Topologie nachweisbar, wobei sich diese Entwicklungen wieder auf die anderen Wissenschaften auswirk(t)en. Für dieses Seminar interessante Formulierungen der Mechanik sind einerseits die durch Lagrange und andererseits die durch Hamilton. Diese sind umfassender als die Formulierung der Mechanik Newtons, da sie auch Feldtheorien und Zwangsbedingungen berücksichtigen. Dabei unterliegen diese zwei Formulierungen unterschiedlicher Betrachtungweisen der Mechanik. Während die Hamiltonsche Mechanik unmittelbar auf dem Energiekonzept beruht und eng in Verbindung mit der Quantenmechanik und allgemeinen Relativitätstheorie steht, ist die Lagrangesche Mechanik auf Variationsprinzipien begründet, die direkt zur allgemeinen Relativitätstheorie führt.Diese Variationsprinzipien sind Koordinatensystemunabhängig. Die Variationsrechnung beschäftigt sich mit reellen Funktionalen, deren Argumente Funktionen sind. Diese können etwa Integrale über eine unbekannte Funktion und ihre Ableitungen sein. Dabei interessiert man sich für stationäre Funktionale, also solche, für die das Funktional ein Maximum, ein Minimum oder einen Sattelpunkt annimmt. Es gibt zwei Arten von Variationsprinzipien. Einerseits gibt es die Differentialprinzipien, zu denen das D' Alambertsche Prinzip zu zählen ist. Andererseits existieren auch Integralprinzipien. Es soll in den folgenden Kapiteln vor allem darum gehen, dass eine Einführung in die Mechanik und einige Anwendungsbeispiele gegeben werdensollen. 36 pp. Deutsch. Bestandsnummer des Verkäufers 9783656371793

Verkäufer kontaktieren

Neu kaufen

EUR 17,99
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kasten Felix
Verlag: GRIN Verlag, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Softcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 18128831833

Verkäufer kontaktieren

Neu kaufen

EUR 36,90
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Felix Kasten
Verlag: GRIN Verlag, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 36. Bestandsnummer des Verkäufers 26128831827

Verkäufer kontaktieren

Neu kaufen

EUR 35,60
Währung umrechnen
Versand: EUR 7,93
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kasten Felix
Verlag: GRIN Verlag, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand pp. 36 424:B&W 5.83 x 8.27 in or 210 x 148 mm (A5) Perfect Bound on Creme w/Matte Lam. Bestandsnummer des Verkäufers 131755660

Verkäufer kontaktieren

Neu kaufen

EUR 35,36
Währung umrechnen
Versand: EUR 10,50
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kasten, Felix
Verlag: Grin Verlag, 2013
ISBN 10: 3656371792 ISBN 13: 9783656371793
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783656371793

Verkäufer kontaktieren

Neu kaufen

EUR 38,10
Währung umrechnen
Versand: EUR 8,81
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb